October 19, 2025
As Multimodal Large Language Models (MLLMs) gain widespread applicability, it is becoming increasingly desirable to adapt them for diverse user needs. In this paper, we study the adaptation of MLLMs through controlled decoding. To achieve this, we introduce the first method for reward-guided decoding of MLLMs and demonstrate its application in improving their visual grounding. Our method involves building reward models for visual grounding and using them to guide the MLLM's decoding process. Concretely, we build two separate reward models to independently control the degree of object precision and recall in the model's output. Our approach enables on-the-fly controllability of an MLLM's inference process in two ways: first, by giving control over the relative importance of each reward function during decoding, allowing a user to dynamically trade off object precision for recall in image captioning tasks; second, by giving control over the breadth of the search during decoding, allowing the user to control the trade-off between the amount of test-time compute and the degree of visual grounding. We evaluate our method on standard object hallucination benchmarks, showing that it provides significant controllability over MLLM inference, while consistently outperforming existing hallucination mitigation methods.
Written by
Pierluca D'Oro
Michal Drozdzal
Aishwarya Agrawal
Publisher
ICCV 2025
November 10, 2025
Omnilingual ASR team, Gil Keren, Artyom Kozhevnikov, Yen Meng, Christophe Ropers, Matthew Setzler, Skyler Wang, Ife Adebara, Michael Auli, Can Balioglu, Kevin Chan, Chierh Cheng, Joe Chuang, Caley Drooff, Mark Duppenthaler, Paul-Ambroise Duquenne, Alexander Erben, Cynthia Gao, Gabriel Mejia Gonzalez, Kehan Lyu, Sagar Miglani, Vineel Pratap, Kaushik Ram Sadagopan, Safiyyah Saleem, Arina Turkatenko, Albert Ventayol-Boada, Zheng-Xin Yong, Yu-An Chung, Jean Maillard, Rashel Moritz, Alexandre Mourachko, Mary Williamson, Shireen Yates
November 10, 2025
October 13, 2025
Chenyu Wang, Paria Rashidinejad, DiJia Su, Song Jiang, Sid Wang, Siyan Zhao, Cai Zhou, Shannon Zejiang Shen, Feiyu Chen, Tommi Jaakkola, Yuandong Tian, Bo Liu
October 13, 2025
September 24, 2025
Jade Copet, Quentin Carbonneaux, Gal Cohen, Jonas Gehring, Jacob Kahn, Jannik Kossen, Felix Kreuk, Emily McMilin, Michel Meyer, Yuxiang Wei, David Zhang, Kunhao Zheng, Jordi Armengol Estape, Pedram Bashiri, Maximilian Beck, Pierre Chambon, Abhishek Charnalia, Chris Cummins, Juliette Decugis, Zacharias Fisches, François Fleuret, Fabian Gloeckle, Alex Gu, Michael Hassid, Daniel Haziza, Badr Youbi Idrissi, Christian Keller, Rahul Kindi, Hugh Leather, Gallil Maimon, Aram Markosyan, Francisco Massa, Pierre-Emmanuel Mazaré, Vegard Mella, Naila Murray, Keyur Muzumdar, Peter O'Hearn, Matteo Pagliardini, Dmitrii Pedchenko, Tal Remez, Volker Seeker, Marco Selvi, Oren Sultan, Sida Wang, Luca Wehrstedt, Ori Yoran, Lingming Zhang, Taco Cohen, Yossi Adi, Gabriel Synnaeve
September 24, 2025
September 24, 2025
Dulhan Jayalath, Shashwat Goel, Thomas Simon Foster, Parag Jain, Suchin Gururangan, Cheng Zhang, Anirudh Goyal, Alan Schelten
September 24, 2025

Our approach
Latest news
Foundational models