FAIRNESS

INTEGRITY

Measuring multi-calibration

June 13, 2025

Abstract

A suitable scalar metric can help measure multi-calibration, defined as follows. When the expected values of observed responses are equal to corresponding predicted probabilities, the probabilistic predictions are known as "perfectly calibrated." When the predicted probabilities are perfectly calibrated simultaneously across several subpopulations, the probabilistic predictions are known as "perfectly multi-calibrated." In practice, predicted probabilities are seldom perfectly multi-calibrated, so a statistic measuring the distance from perfect multi-calibration is informative. A recently proposed metric for calibration, based on the classical Kuiper statistic, is a natural basis for a new metric of multi-calibration and avoids well-known problems of metrics based on binning or kernel density estimation. The newly proposed metric weights the contributions of different subpopulations in proportion to their signal-to-noise ratios; data analyses' ablations demonstrate that the metric becomes noisy when omitting the signal-to-noise ratios from the metric. Numerical examples on benchmark data sets illustrate the new metric.

Download the Paper

AUTHORS

Written by

Ido Guy

Daniel Haimovich

Fridolin Linder

Nastaran Okati

Lorenzo Perini

Niek Tax

Mark Tygert

Publisher

arXiv

Research Topics

Integrity

Core Machine Learning

Related Publications

March 25, 2025

INTEGRITY

SPEECH & AUDIO

Targeted Data Poisoning for Black-Box Audio Datasets Ownership Verification

Wassim (Wes) Bouaziz, El Mahdi El Mhamdi, Nicolas Usunier

March 25, 2025

March 24, 2025

INTEGRITY

RESEARCH

Data Taggants: Dataset Ownership Verification Via Harmless Targeted Data Poisoning

Wassim (Wes) Bouaziz, Nicolas Usunier, El Mahdi El Mhamdi

March 24, 2025

February 27, 2025

INTEGRITY

THEORY

Logic.py: Bridging the Gap between LLMs and Constraint Solvers

Pascal Kesseli, Peter O'Hearn, Ricardo Silveira Cabral

February 27, 2025

August 15, 2024

INTEGRITY

COMPUTER VISION

Guarantees of confidentiality via Hammersley-Chapman-Robbins bounds

Kamalika Chaudhuri, Chuan Guo, Laurens van der Maaten, Saeed Mahloujifar, Mark Tygert

August 15, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.