INTEGRITY

SPEECH & AUDIO

Targeted Data Poisoning for Black-Box Audio Datasets Ownership Verification

March 25, 2025

Abstract

Protecting the use of audio datasets is a major concern for data owners, particularly with the recent rise of audio deep learning models. While watermarks can be used to protect the data itself, they do not allow to identify a deep learning model trained on a protected dataset. In this paper, we adapt to audio data the recently introduced data taggants approach. Data taggants is a method to verify if a neural network was trained on a protected image dataset with top-k predictions access to the model only. This method relies on a targeted data poisoning scheme by discreetly altering a small fraction (1%) of the dataset as to induce a harmless behavior on out-of-distribution data called keys. We evaluate our method on the Speechcommands and the ESC50 datasets and state of the art transformer models, and show that we can detect the use of the dataset with high confidence without loss of performance. We also show the robustness of our method against common data augmentation techniques, making it a practical method to protect audio datasets.

Download the Paper

AUTHORS

Written by

Wassim (Wes) Bouaziz

El Mahdi El Mhamdi

Nicolas Usunier

Publisher

ICASSP

Related Publications

March 24, 2025

INTEGRITY

RESEARCH

Data Taggants: Dataset Ownership Verification Via Harmless Targeted Data Poisoning

Wassim (Wes) Bouaziz, Nicolas Usunier, El Mahdi El Mhamdi

March 24, 2025

February 27, 2025

INTEGRITY

THEORY

Logic.py: Bridging the Gap between LLMs and Constraint Solvers

Pascal Kesseli, Peter O'Hearn, Ricardo Silveira Cabral

February 27, 2025

February 07, 2025

RESEARCH

SPEECH & AUDIO

Meta Audiobox Aesthetics: Unified Automatic Quality Assessment for Speech, Music, and Sound

Andros Tjandra, Yi-Chiao Wu, Baishan Guo, John Hoffman, Brian Ellis, Apoorv Vyas, Bowen Shi, Sanyuan Chen, Matt Le, Nick Zacharov, Carleigh Wood, Ann Lee, Wei-Ning Hsu

February 07, 2025

October 16, 2024

SPEECH & AUDIO

COMPUTER VISION

Movie Gen: A Cast of Media Foundation Models

Movie Gen Team

October 16, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.