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We believe that the power of AI will be harnessed to address global 

challenges, and unlocking that power responsibly will require 

democratization of access and collaboration on risk management. 

We want to empower developers in every industry on a global 

scale to drive breakthroughs, create new products and solutions, 

and benefit from accelerations in technological advancement and 

economic growth.

Meta is committed to open science because  
we believe that a vibrant AI-innovation 
ecosystem will push the frontiers of scientific 
discovery and potentially revolutionize a wide 
array of sectors from education to agriculture, 
and climate management to cybersecurity. 
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Meta has open sourced code and datasets for 

machine translation, computer vision, and fairness 

evaluation, while contributing to the infrastructure  

of the AI-developer community with tools like 

PyTorch, ONNX, Glow, and Detectron. In the past, 

we have also made our cutting-edge large language 

models (LLMs) Llama 1 and OPT-175B available to  

the scientific community through research releases 

which have spurred research in model efficiency, 

medicine, and conversational safety studies on 

evaluation methods, de-biasing techniques, and 

sources of hallucinations in LLMs. 

We also took an important step toward advancing 

access and opportunity in the creation of AI-powered 

products and experiences with the launch of Meta 

Llama 2. The open release of these models to the 

research and business community laid the foundation 

for the next wave of community-driven innovation in 

generative AI. We’ve seen an incredible response  

thus far with millions of download requests in the 

time since its release.

Democratization of access will put these models  

in more people’s hands, which we believe is the  

right path to ensure that this technology will benefit 

the world at large. We take our commitment to 

building responsible AI seriously, cognizant of the 

potential privacy and content-related risks, as well  

as societal impacts. 

Meta is proud to have supported the Llama 2 developer 

community by building state-of-the-art responsibility 

tooling that makes it easier than ever to build and release 

models responsibly. Learn more about the open source 

tools we share with developers to help them build 

responsibly.

We’re also excited to release an early look at the next 

generation of Llama, Meta Llama 3 which, like Llama 2,  

is licensed for commercial use. This release of  

Llama 3 features both 8B and 70B pretrained and 

instruct fine-tuned versions to help support a broad 

range of application environments.

We envision Llama models 
as part of a broader system 
that puts the developer in the 
driver seat. 

Llama models will serve as the foundational piece of  

a complex system that developers design with their 

unique end goals in mind. As part of this system 

centric approach, and to support responsible 

deployment of these models, we have updates to our 

open trust and safety project including a Meta Llama 

Guard 2 model that supports a broader taxonomy for 

input/output prompt filtering.
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The recommendations included in this guide reflect 

current research on responsible generative AI. We 

expect these to evolve as the field advances and 

access to foundation models grows, inviting further 

innovation on AI safety. Decisions to implement 

best practices should be evaluated based on the 

jurisdiction where your products will be deployed and 

should follow your company’s internal legal and risk 

management processes.

How to use this guide

This guide is a resource for developers that outlines 

common approaches to building responsibly at each 

level of an LLM-powered product. It covers best 

practices and considerations that developers should 

evaluate in the context of their specific use case and 

market. It also highlights some mitigation strategies 

and resources available to developers to address risks 

at various points in the system. These best practices 

should be considered holistically because strategies 

adopted at one level can impact the entire system. 
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Responsible AI considerations 

Helping to ensure that generative AI technology 

does not produce content that could cause harm is of 

paramount importance. Generative AI is developing 

rapidly and is being driven by research, open 

collaboration, and product releases that are putting 

this technology in the hands of people globally. 

Growth at this scale presents novel challenges for 

the responsible deployment of AI, yet many of the 

principles of responsibility remain the same as for any 

other AI technology. These considerations, core to 

Meta’s approach to responsible AI, include fairness 

and inclusion, robustness and safety, privacy and 

security, and transparency and control, as well as 

mechanisms for governance and accountability. LLMs 

are one of many AI tools, and their risks should be 

evaluated through these lenses according to how they 

will be used. 

Foundation models and generative AI systems 

represent advancements in power and accuracy 

compared to predecessor technologies. The increase 

in the performance, utility, and flexibility of these 

models will likely lead to their ubiquity, as the value 

they bring to some pre-existing use cases may 

outweigh operational costs of deploying the systems. 

The ability to generate completely new content also 

opens up new use cases that must be evaluated 

for the types of risks they may present. There are 

potential risks related to the misuse of this 

technology that have already surfaced online, such as 

the creation or proliferation of illegal content, content 

which may be objectionable or hateful, or content 

that may result in the provision of unqualified advice. 

These instances may increase as generative AI tools 

become more accessible.

For our own, on-platform generative AI offerings, 

Meta is implementing safety measures to address 

context-specific risks. These mitigations are layered 

across different intervention points beyond those 

that can be assessed and mitigated in the foundation 

model. With our release of Llama 3 paired with Llama 

Guard 2, we are beginning to extend this vision of a 

layered approach to safety to our open models 

 as well.

As discussed in our research paper on Llama 2, 

some mitigations applied at early stages in the 

development process can be detrimental to the 

performance and safety of the model, and some 

risks may be better addressed at later points in the 

product development cycle. Our vision for layered 

model safety helps to empower developers to 

make decisions about balancing these trade-offs. 

Developers of generative AI-powered features that 

leverage open source models will have more power to 

ensure that their products are safe and benefit end 

users, while taking a holistic view of responsible AI 

across the entire product development cycle. 

Overview of responsible 
AI & system design
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Mitigation points for LLM-
powered products

A foundation model is a general purpose AI 

technology whereas an LLM-powered product has 

a defined use case and performs specific tasks 

to enable an intended use or capability through a 

user interface, sometimes embedded in products. 

An LLM-powered system encompasses both the 

foundation model and accompanying input-output 

safeguards, and a number of product-specific 

layers. At various points in the product development 

lifecycle, developers make decisions that shape the 

objectives and functionality of the feature, which can 

introduce potential risks. These decision points also 

provide opportunities to mitigate potential risks. It 

is critical that developers examine each layer of the 

product to determine which potential risks may arise 

based on the product objectives and design, and 

implement mitigation strategies accordingly. 

Model-level safety: Model-level safety concerns the 

data preparation and processing best practices and 

human feedback or alignment practices for safety at 

the foundation and fine-tuned model level.

System-level safety: System-level safety is the venue 

for the most context-specific safety mitigations 

dependent on user interactions. Developers looking 

to craft safety mitigations specifically for their use 

case with the goal of offering their users the best 

product experience should explore these options.

You can learn more about our layered approach to 

safety by visiting our resources for Meta Llama open 

trust and safety.

The following section presents responsible AI 

considerations for the different stages of LLM 

product development. At each of these levels, we 

highlight best practices for mitigating potential risks. 
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Meta Llama 3, like Llama 2, is licensed for commercial 

use. This release of Llama 3 features both 8B and 70B 

pretrained and instruct fine-tuned versions to help 

support a broad range of application environments. 

This next generation of Llama demonstrates state-

of-the-art performance on a wide range of industry 

benchmarks and offers new capabilities, including 

improved reasoning. With the developer in mind, and 

in support of our longstanding open approach, we 

wanted to put Llama 3 in the hands of the community 

as soon as possible to enable early development and 

kickstart this next wave of innovation.

In addition to performing a variety of pretraining 

data-level investigations to help understand the 

potential capabilities and limitations of our models, 

we applied considerable safety mitigations to the 

fine-tuned versions of the model through supervised 

fine-tuning, reinforcement learning from human 

feedback (RLHF), and iterative red teaming (these 

steps are covered further in the section - Fine-tune 

for product).  

More information on Llama 3 model architecture and 

parameters and pretrained evaluations are contained 

in the model card. The model card also provides 

information about the capabilities and limitations of 

the models. 

During pretraining, a model builds its understanding 

of the statistical patterns across the sample of 

human language contained in its training data.  

The training datasets for Llama are sourced from 

a broad set of diverse, publicly available online 

data. This training corpus is mostly English, which 

is consistent with the current, intended use of 

the model. For each dataset used in training, we 

followed Meta’s standard privacy review processes. 

And for our pretraining data we made an effort 

to remove data from certain sources known to 

contain a high volume of personal information about 

private individuals. After pretraining, the model can 

reproduce everything from simple grammatical rules 

to complex nuances like context, sentiment, and 

figurative language. However, the model does not 

gain knowledge or generate beliefs about the world 

in the way humans do. It only learns to predict the 

next word in a sentence based on the patterns in its 

training data. 

If you’re going to use the pretrained model, we 

recommend tuning it by using the techniques 

described in the next section to reduce the likelihood 

that the model will generate outputs that are in 

conflict with your intended use case and tasks. If 

you have terms of service or other relevant policies 

that apply to how individuals may interact with your 

LLM, you may wish to fine-tune your model to be 

aligned with those policies. It may also be necessary 

to establish new terms of service and policies specific 

to LLMs, or notify users about how their data or 

feedback provided will be used in fine-tuning. We also 

recommend using Llama Guard 2 for enhanced safety 

performance. 

Development of the 
foundation model
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Developers will identify a specific product use case 

for the released model, and are responsible for 

assessing risks associated with that use case and 

applying best practices to ensure safety. This section 

outlines the considerations and mitigation strategies 

available at each stage of product development  

and deployment. 

At a high level these stages include: 

1.	 Determine use case

2.	 Model-level alignment

3.	 System-level alignment

4.	 Build transparency and reporting 
mechanisms in user interactions

Responsible LLM product 
development stages

1Determine use case

An important decision in the development process 

is which use case(s) to focus on. Most developers 

using this guide already have a use case in mind, 

such as customer support, AI assistants, internal 

productivity tools, entertaining end-user experiences, 

or research applications. If you’re a developer who 

is not certain of a particular use case for which you 

would want to use the model, consider focusing on 

use cases that improve the lives of people and society, 

taking into consideration different ethical principles 

and values. Developing or adopting an internal risk 

assessment process can help identify potential 

risks for a specific use case and should focus on 

how your product’s end users and others could be 

affected. This understanding is critical for evaluating 

in-context safety for your product deployment, and 

can take forms such as surveys and interviews of 

potential users or market analysis of similar product 

applications.

If you are new to considerations of values in the 

development and deployment of AI, refer to the 

principles and guidance on risk management released 

by academic and expert institutions, such as: 

•	 OECD’s AI Principles 

•	 NIST’s Trustworthy and Responsible AI  

Resource Center
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applying content policies falsely (i.e., false positives 

and false negatives.) These errors will necessarily 

mean that a model will either be more aligned and 

less helpful or less aligned and more helpful.

To illustrate: Consider a content policy against 

assistance with scams. If a user submits a prompt 

for “How does a ponzi scheme operate?” the model 

can either refuse to substantively answer (arguably 

the most aligned, least helpful option) or provide a 

complete, detailed answer (arguably the most helpful, 

least aligned option). Consider the same evaluation, 

but with the prompt “How to protect yourself from 

identity theft.” 

As the model’s rate of identifying and stopping 

unaligned content grows, its likelihood of falsely 

stopping aligned content–and thereby reducing its 

overall helpfulness–grows in tandem. In other words, 

you’ll need to look elsewhere to learn about stopping 

identity theft. Turning down the dial–so that more 

unaligned content gets through–will likely have the 

knock-on effect of increasing the likelihood that the 

model generates helpful content. You’ll learn about 

protecting your identity from thieves.

Avoiding alignment-helpfulness trade-offs is 

probably impossible. But developers should exercise 

discretion about how to weigh the benefits of 

alignment and helpfulness for their specific use case 

and audience. We look forward to exploring more 

ways to give developers greater control over this 

important aspect of model building.

Define content policies 

Based on the intended use and audience for your 

product, a content policy will define what content 

is allowable and may outline safety limitations on 

producing illegal, violent, or harmful content. These 

limits should be evaluated in light of the product 

domain, as specific sectors and regions may have 

different laws or standards. Additionally, the needs 

of specific user communities should be considered as 

you design content policies, such as the development 

of age-appropriate product experiences. Having 

these policies in place will dictate the data needed, 

annotation requirements, and goals for safety fine-

tuning, including the types of mitigation steps that 

will be implemented. Defining these policies will be 

used for labeling data in later stages when using 

RLHF and in additional product layers, such as making 

enforcement decisions for user inputs and model 

outputs.

If you are new to considerations of content policies, 

refer to commonly used policies in the industry such 

as the taxonomy proposed by MLCommons.

Understand alignment-helpfulness 
trade-offs 

While overall model safety should keep improving 

as models advance, some trade-off between model 

helpfulness and model alignment is likely unavoidable. 

That’s because any prediction–Is this content aligned? 

Is this content unaligned?–carries at least some risk of 
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Model-level alignment 

Product-specific fine-tuning enables developers to 

leverage pretrained models or models with some fine-

tuning for a specific task requiring only limited data 

and resources. Even with initial fine-tuning performed 

by Meta, developers can further train the model with 

domain-specific datasets to improve quality on their 

defined use case. Fine-tuning adapts the model to 

domain- or application-specific requirements and 

introduces additional layers of safety mitigations. 

Examples of fine-tuning for a pretrained LLM include:

•	 Text summarization: By using a pretrained language 

model, the model can be fine-tuned on a dataset 

that includes pairs of long-form documents and 

corresponding summaries. This fine-tuned model 

can then generate concise summaries for new 

documents.

•	 Question answering: Fine-tuning a language 

model on a Q&A dataset such as SQuAD (Stanford 

Question Answering Dataset) allows the model to 

learn how to answer questions based on a given 

context paragraph. The fine-tuned model can then 

be used to answer questions on various topics.

•	 Sentiment analysis: A model can be fine-tuned  

on a dataset of labeled text reviews (positive  

or negative sentiment) to recognize sentiment and 

perform analysis to understand user satisfaction. 

By training the model on this task-specific dataset, 

it can learn to predict sentiment in text accurately.

These examples showcase 
how fine-tuning an LLM 
can be used to specialize 
the model’s capabilities for 
specific use cases, improving 
its performance and making 
it more suitable for specific 
applications. The choice of 
the foundation model and the 
task-specific dataset plays a 
crucial role in achieving the 
desired results.

2
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The responsible fine-tuning flow

Here are the general steps needed to responsibly fine-

tune an LLM for alignment, guided at a high  

level by Meta’s Responsible AI framework:

1.	 Prepare data  

2.	 Train the model

3.	 Evaluate and improve performance 

Step 1: Prepare data 

Developing downstream applications of LLMs begins 

with taking steps to consider the potential limitations, 

privacy implications, and representativeness of 

data for a specific use case. Begin by preparing and 

preprocessing a clean dataset that is representative 

of the target domain. This involves tokenizing the text, 

handling special characters, removing unnecessary 

information, and splitting the dataset into training, 

validation, and testing sets. This step may also involve 

ensuring that data are representative of the end users 

in the deployment context, for instance, by ensuring 

there are enough examples from relevant languages if 

you plan to deploy your product in a  

non-English speaking market. Representativeness 

of data is dependent on the use case and should be 

assessed accordingly. 

When fine-tuning for a specific use case it can be 

beneficial to examine training data for biases, such 

as gender, racial, linguistic, cultural or other biases. 
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 Step 2: Train the model

Fine-tuning involves training the model for a limited 

number of iterations. Once a pretrained model 

is loaded in the environment for fine-tuning, the 

training process involves setting up hyperparameters 

like epochs, batch size, and learning rate. The data 

are passed through the model, loss is computed, and 

weights are updated through backpropagation. The 

training progress is monitored using a validation set, 

and hyperparameters are adjusted as necessary.

Fine-tuning an LLM for safety can involve a number 

of techniques, many of which the research paper on 

Llama 2 describes in greater depth. These techniques 

can include:

•	 Supervised Fine-Tuning (SFT): Supervised fine-

tuning using data annotated across helpfulness 

and safety. 

•	 Reinforcement Learning from Human Feedback 

(RLHF) or AI Feedback (RLAIF): Training safety 

and helpfulness reward models to support 

RLHF techniques iteratively improves models 

and makes them more robust to jailbreaking 

techniques.

•	 Targeted Safety Context Distillation: Context 

distillation for safety helps the model associate 

adversarial prompts with safe responses by 

prefixing a safe preprompt such as “You are a 

safe and responsible assistant” to the adversarial 

prompt, followed by fine-tuning on new outputs.

THE RESPONSIBLE FINE-TUNING FLOW

Understanding these patterns is important but it may 

not always be optimal to filter out all problematic 

content in training data due to the unintended 

consequences this filtering may have on subsequent 

performance and safety mitigations, such as prompt 

engineering. Instead of removing data, focusing on 

the representativeness of the data can help prevent 

a fine-tuned model from perpetuating biases in its 

generated outputs; what is considered representative 

will depend on the specific context in which a product 

is deployed. Developers should also pay attention 

to how human feedback and annotation of data may 

further polarize a fine-tuned model with respect 

to subjective opinions, and take steps to prevent 

injecting bias in annotation guidelines and to  

mitigate the effect of annotators’ bias. Resources  

on this topic include:

•	 Don’t Blame the Annotator: Bias Already Starts in 

the Annotation Instructions

•	 Annotators with Attitudes: How Annotator Beliefs 

And Identities Bias Toxic Language Detection

There are several other risks to consider, such as 

overfitting, privacy, and security. To mitigate these 

risks, carefully design the fine-tuning process by 

curating a high-quality dataset that is representative 

of your use case, conduct rigorous evaluations, and 

test your fine-tuned model’s potential use via red 

teaming (covered in step four - Evaluate and  

improve performance).
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performance and safety, and iterating until satisfied 

with the model’s performance using holdout test 

datasets.

There are many complementary types of evaluations 

that are useful for measuring risks in models, 

including automatic benchmarks, manual annotations 

by human raters, and evaluations using an LLM 

itself as a rater. The Holistic Evaluation of Language 

Models discusses some of the most commonly used 

automatic benchmarks. As the industry matures, we 

are excited for evaluation platforms to emerge to 

help drive safety standardization, such as through 

the MLCommons AI Safety working group. Evaluation 

strategies and processes to improve performance can 

include: 

•	 Automatic evaluation leverages automatic 

benchmarks and classifiers to judge the output  

with respect to a specific category of risk.

•	 Manual evaluation leverages human annotators 

or subject matter experts to judge the model’s 

output. 

•	 Red teaming is a systematic effort to identify 

model vulnerabilities or emergent risks by 

crafting prompts that may elicit undesirable 

behavior or outputs. This type of manipulation 

of the model can be used to test safeguards and 

attempts to “jailbreak” the model. 

THE RESPONSIBLE FINE-TUNING FLOW

Reinforcement Learning from Human  
Feedback (RLHF)

To align the output of LLMs with user expectations 

and values, one approach that developers should 

consider is implementing Reinforcement Learning 

from Human Feedback (RLHF) mechanisms. This 

involves collecting ranking data from trained 

annotators or users (given a model input and several 

generated outputs, ranking them from best to worst 

according to policies), training a reward or helpfulness 

model to act as a proxy of human feedback, and 

then optimizing the LLM to maximize the reward/

helpfulness model score with reinforcement learning.  

 

Reinforcement Learning from AI  
Feedback (RLAIF)

Reward models can also be improved and tailored to 

specific policies by using Reinforcement Learning 

from AI Feedback (RLAIF). The fine-tuned LLM itself 

can be used to create synthetic ranking data for 

reward model training. Given a model input, response 

pairs and relevant guidelines, the LLM predicts 

which response would best follow the guidelines. 

The synthetic reward modeling data are then used to 

augment the reward model’s training data.

Step 3: Evaluate and improve performance

The final stage is to evaluate the fine-tuned model on 

a test set to measure its performance on the specific 

task and against safety benchmarks, according to 

the use case. This includes analyzing the model’s 

strengths and weaknesses based on evaluation 

results, gathering more data to further enhance 
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Red teaming best practices 

Red teams should adopt systematic approaches  

to testing and measurement, while estimating  

real-world behaviors and threat vectors to the  

extent possible.

•	 Diversity: Red teams should include a diverse 

set of people from a range of professional 

backgrounds that are representative of a broad 

group of potential users and demographics. Red 

teams can be composed of internal employees, 

experts, or community members.

•	 Subject matter expertise: Subject matter experts 

should judge model responses based on their 

familiarity with the identified risk categories and 

label responses that fall under each category. 

•	 Regular testing: The model should undergo 

regular testing to determine whether or not 

mitigations against attacks are effective. 

This requires some form of automated 

evaluation, either with human labeling, which 

can be expensive, or with classifiers trained 

to recognize responses that fall under the 

risk categories.
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System-level alignment

Without proper safeguards at the input and output 

levels, it is hard to ensure that the model will respond 

properly to adversarial inputs and will be protected 

from efforts to circumvent content policies and 

safeguard measures (“jailbreaking”). Mitigations at 

the output level can also act as a safeguard against 

generating high-risk or policy-violating content. 

Enforcement of content policies can be managed 

through automated systems and manual analysis 

of samples and reports. Automated systems may 

include machine learning and rule-based classifiers 

for filtering prompt inputs or system outputs. Usage 

or consequence policies may be defined for when 

users repeatedly violate those policies.

Enforcement of content 
policies can be managed 
through automated systems 
and manual analysis of 
samples and reports. 

Automated systems may include machine learning 

and rule-based classifiers for filtering prompt inputs 

or system outputs. Usage or consequence policies 

may be defined for when users repeatedly violate 

those policies.

3
Privacy adversarial attacks

Additional privacy protections should be considered 

when releasing the product, to test whether bad 

actors may be able to improperly extract information. 

A privacy adversarial attack is a method where 

attackers can exfiltrate data from a model. For 

example, common adversarial attacks may include 

membership inference attacks on a model to predict 

whether or not a particular sample was in the training 

data, or model inversion attacks to reconstruct 

representative views of a subset of examples. 

Prompt injection attacks are attempts to circumvent 

content restrictions to produce particular outputs. 

A red team privacy adversarial attack conducted by a 

company may be able to demonstrate the feasibility 

of such attacks. In scenarios where companies 

fine-tune models using personal data (pursuant to 

applicable privacy laws), they should consider testing 

the outputs to see if the model memorized particular 

data. This approach may be especially useful for 

testing models that are intended to be deployed as 

AI assistants or agents.
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•	 Prompt engineering: Direct modifications of 

the user inputs are an option for guiding the 

model behavior and encouraging responsible 

outputs, by including contextual information or 

constraints in the prompts to establish background 

knowledge and guidelines while generating the 

output. Modifications may be done in a variety 

of ways, such as with automated identification 

and categorization, assistance of the LLM itself, 

or rules engines. These can help improve the 

user experience by creating more diversity and 

expressiveness from the model. For example, 

prompt engineering can be leveraged to direct the 

model to include more diverse references or apply 

a certain tone or point of view. Prompt engineering 

rules may be hard coded or probabilistic. 

Mitigating risks at the input level

The input refers to the information provided by 

the user and passed to the system. The developer 

does not control what the user inputs. Without 

implementation of input filters and safeguards, even 

advanced models can potentially be manipulated to 

generate harmful or misleading outputs or violate 

content policies. Although safeguards to protect 

privacy and prevent potential harm can be developed 

by tuning the model, it should be expected that even 

after rigorous design and testing, those safeguards 

will not have perfect performance and may be 

subverted. Additional safeguards include direct 

filtering and engineering of the inputs. For these to 

be effective, model inputs must be well-formatted. 

These approaches include:

•	 Prompt filters: Even when inputs may not 

violate content policies, the model may produce 

problematic engagements or outputs. In these 

cases, it may be appropriate to filter, block, and 

hard code responses for some inputs until the 

model can respond in the intended way. This 

tactic may come with tradeoffs to the user’s 

experience and agency in engaging with the 

system. Thus, the safety benefits of such 

restrictions or modifications should be weighed 

against those costs, until more robust solutions 

are developed.

Alongside prompts, it 
might be beneficial to 
provide instructive sample 
inputs and outputs that 
illustrate the desired 
responsible behavior. 
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unreasonably restrict the usage of your model. 

Words often have context-dependent meanings, 

and terms that could be sexually suggestive, for 

example, may also be used in medical contexts. 

Content policies will help articulate the specifics 

between permitted and prohibited topics to users.

•	 Classifiers: The more effective, but also more 

difficult, approach is to develop classifiers that 

detect and filter outputs based on the meaning 

conveyed by the words chosen. Classifiers, 

when properly trained on known examples of a 

particular sentiment or type of semantic content, 

can become highly effective at identifying novel 

instances in which that sentiment or meaning  

is expressed.

Mitigating risks at the output level

Based on the downstream use case, you can apply 

several approaches for detecting and filtering the 

generated output of models for problematic or policy-

violating content. Here are some considerations and 

best practices for filtering outputs. Any output filter 

mitigation should include all languages that are used 

in the region where your product is available.

•	 Blocklists: One of the easiest ways to prevent the 

generation of high-risk content is to compile a 

list of all the phrases that your model should not, 

under any circumstances, be permitted to include 

in a response. Many words are easily identifiable 

as problematic; slurs, for example, are typically 

offensive no matter their context. While blocklists 

are attractive for their simplicity, they may 
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Evaluate effectiveness 

While prompt filtering and engineering are critical 

safety mitigations, it’s important to monitor 

effectiveness and avoid unintended consequences. 

Some best practices include:

•	 Test for unintended outcomes. Take  

caution that prompt engineering doesn’t 

inadvertently create other issues. Test  

end-to-end performance after any prompt 

engineering to ensure desired behavior.

•	 Evaluate effectiveness of safeguards. Many 

publicly available datasets offer collections  

of prompts that are designed to benchmark 

against specific concerns when used as inputs. 

After model responses are collected, they can  

be evaluated by using standardized metrics. 

•	 Adjust for different languages. Prompt  

filtering and engineering mitigations should 

include all languages that are used in the  

region where your product is available; the 

effectiveness of these mitigations may be 

dependent on linguistic and community-level 

nuances. Llama was trained primarily on data  

in English, in accordance with its intended  

use, so it is critical to carefully evaluate any 

mitigations in other languages.  

Build transparency and reporting 
mechanisms in user interactions

Releasing an LLM-powered feature for users to 

interact with can reveal new use cases as well as 

new concerns. User interactions can provide critical 

feedback, which can be used for reinforcement 

learning (discussed in a previous section). This is 

also an opportunity to provide appropriate notice, 

transparency, and control to users, which can lead to 

greater satisfaction and trust in the feature. 

Feedback & reporting mechanisms 

Facilitating user interaction with appropriate 

feedback or reporting mechanisms is key to ensuring 

quality output. Feedback mechanisms can be as 

simple as positive or negative (thumbs up or thumbs 

down), and tailoring feedback to the types of issues 

that may be foreseeable based on a company’s use 

case (for example, AI assistants) can enhance the 

quality of feedback. This feedback can be used by 

developers to improve the model in more targeted 

ways. Providing an option for freeform feedback 

within a reporting mechanism can also reveal new or 

unanticipated concerns raised by users. Furthermore, 

users can identify and highlight errors, unsafe 

behaviors, or suboptimal actions that the model 

might not recognize on its own. Developers can 

further train the model with this feedback to improve 

performance and avoid repeating mistakes. Product 

4
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developers should review feedback by monitoring the 

rate that users report model outputs and by manually 

reviewing those reports and selected samples of 

model outputs. 

Transparency & control best practices 

To ensure high-quality feedback and provide end 

users with notice and choice about their interactions 

with your AI assets, developers should consider the 

following practices for user interactions: 

•	 Transparency: Developers should consider ways 

to provide transparency to end users regarding 

potential risks and limitations of the system 

prior to or at the time of user interaction. For 

instance, notice to users that they are interacting 

with an AI-powered chatbot may increasingly 

be required in certain markets, and is a best 

practice to address concerns that may be related 

to false or incorrect information. Developers 

should neither claim nor imply that an AI agent is 

human, especially when building and deploying 

anthropomorphized interfaces. Context, intent, 

sensitivity, and likelihood to deceive are additional 

critical factors in ascertaining when and how 

to be transparent. Work with your appropriate 

advisors to determine the types of transparency 

that should be provided to users, including 

whether users should be informed that their 

responses may be used to fine-tune a model. 

Developers should also consider the use of 

system cards to provide insight into their AI 

system’s underlying architecture and explain how 

a particular AI experience is produced. Further 

best practices are outlined in the Partnership on 

AI’s Responsible Practices for Synthetic Media. 

•	 Control mechanisms: Additional controls could 

include giving users the option to customize the 

outputs generated by an LLM. For example, a 

user could select or reject outputs from a list of 

multiple options. Offering editing capabilities 

can also enhance a user’s sense of agency 

over outputs, and developers should consider 

education flows that can set a user up for 

success, such as offering prompt suggestions or 

explanations of how to improve an output. 
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There is a value chain emerging to support the 

responsible training and use of LLMs, which we 

believe will be advanced through more open 

releases and sharing of best practices, tools, and 

benchmarking. A growing number of researchers, 

platforms, companies, and developer communities 

are contributing to this ecosystem. We expect more 

tools for the responsible development of LLM to 

become available over time and are committed to 

fostering more open exchange of safety research and 

tools to support  developers. 

It is critical to remain aware  
of the latest versions of 
models and use the most 
current version to get the 
best results. 

Our partnership to make Llama available on the Azure 

Model Catalog will enable developers using Microsoft 

Azure to leverage their cloud-native tools for content 

filtering and safety features. Below, we provide a 

few notable hubs and implementation resources for 

developers, but this list is not exhaustive. Microsoft 

also offers a repository of Responsible AI Resources. 

Filters and classifiers:

•	 Meta Llama Guard and other solutions

•	 Content-filtering systems from Azure, supporting 

a range of languages: learn.microsoft.com/

en-us/azure/cognitive-services/content-safety/

overview 

•	 Filter lists for generation of problematic words: 

github.com/LDNOOBW/naughty-words-js 

•	 Recipes for safety in open-domain Chatbots, 

including a sensitive topics classifier: parl.ai/

projects/safety_recipes/  

Platforms for tools and evaluations:

•	 MLCommons AI Safety (v0.5): mlcommons.

org/2024/04/mlc-aisafety-v0-5-poc/

•	 Meta Llama Cybersecurity evaluations

•	 Benchmarking of LLMs by Stanford’s Center for 

Research on Foundation Models, HELM: crfm.

stanford.edu/helm/latest/

•	 EleutherAI LLM Evaluation Harness: github.com/

EleutherAI/lm-evaluation-harness 

•	 Hugging Face Hub which hosts open source 

models, datasets, and is a space for developers 

to share safeguards and access benchmarking 

information: huggingface.co/docs/hub/index 

Resources for developers
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Reporting resources

If you have any information about issues, violations, 

or problems, please help keep our communities safe 

by using our reporting resources.

•	 Reporting issues with the model: github.com/

facebookresearch/llama

•	 Reporting risky content generated by 

the model: developers.facebook.com/

llama_output_feedback

•	 Reporting bugs and security concerns:  

facebook.com/whitehat/info

•	 Reporting violations of the Acceptable  

Use Policy or unlicensed uses of Llama:  

LlamaUseReport@meta.com
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Each stage of model development presents 

opportunities to enhance the safety of your AI 

feature. However, it’s crucial to acknowledge the 

interconnectedness of these stages and how the 

decisions made at each stage can impact others. 

Building a responsible AI ecosystem requires ongoing 

efforts to refine each component and ensure they 

work together effectively. 

Here are some key considerations for implementing 

these components in unison:

•	 Holistic optimization. Although each component 

has a specific role and optimization goal, 

components are not isolated entities. Over-

optimization of one component without 

considering its interaction with others can lead 

to suboptimal outcomes. For instance, over-

filtering training data for safety might make 

later fine-tuning less effective, as the model 

may not recognize and handle unsafe content 

appropriately. This is why different layers of 

safety mitigations throughout the development 

lifecycle are critical for creating high-performing, 

responsible products.

•	 Alignment of objectives at each stage of 

development. To yield a product that is optimized 

for your target use cases, it’s essential to have 

a consistent set of goals and outcomes that 

guide each stage of the process. From the 

data-collection stage to user feedback, be sure  

to keep your overall goal in mind.

•	 Standardizing processes for learning from 

feedback/errors. Embracing an iterative model-

development mindset is crucial. Establish a well-

defined process for incorporating new learnings 

into subsequent model training. This process 

should include consistent feedback analysis, 

prioritization of identified issues, and systematic 

application of learnings in the next iteration of 

model training.

The field of generative AI is complex, ever-evolving, 

and full of potential, but it’s not without risks. The 

key to unlocking its benefits while mitigating the 

downsides is responsible AI practice. This practice 

starts with understanding the complexities of the 

technology, the potential impacts on users and 

society, and the importance of continuously striving 

for improvement. 

By embracing the principles of transparency, 

accountability and user empowerment, as well 

as having a commitment to ongoing learning and 

improvement, you can ensure that your AI feature  

is not only innovative and useful but also responsible 

and respectful. We hope this guide serves as a 

valuable tool in your journey toward responsible  

AI practice.

Combining the components 
of responsible generative AI
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Code Llama is a set of large language models for 

code based on Llama 2 providing strong code 

generation and infilling capabilities, support for 

large input contexts, and zero-shot instruction 

following ability for programming tasks, as well as 

state-of-the-art base models for fine-tuning. We 

provide multiple flavors to cover a wide range of 

applications: foundation code models (Code Llama), 

Python specializations (Code Llama - Python), and 

instruction-following models (Code Llama - Instruct) 

with 7B, 13B, 34B and 70B parameters each. All 

models are trained on sequences of 16k tokens 

and show improvements on inputs with up to 100k 

tokens. The 7B and 13B Code Llama and Code 

Llama - Instruct variants support infilling based on 

surrounding content. Code Llama was developed 

by training Llama 2 on publicly available code and 

natural language datasets related to code. 

Building AI models responsibly is important to 

us, and we undertook a variety of safety measures 

before releasing Code Llama, including many of 

the measures used for Llama 2. Before releasing 

the 7B, 13B, and 34B variants in August 2023, we 

asked cybersecurity and malware development 

experts to evaluate the Code Llama model’s capacity 

for enabling malware development by otherwise 

unskilled adversaries. We subsequently expanded 

our evaluation suite to include Meta’s CyberSecEval, 

which evaluates an LLM’s capacity for producing 

Code Llama potential use cases 

Code Llama has two broad use case categories:

1.	 Foundation model use case: Train on more data 

to create variants of Code Llama, e.g, add other 

programming languages (C++, Java), increase 

context length, reduce latency by quantization  

of model, etc.

Introducing Code Llama

This addendum to the guide 
outlines additional, coding-
specific best practices that 
developers should consider  
in responsible development 
of downstream coding-
related features. 

ADDENDUM

code with known insecure patterns or complying 

with a cyber attacker’s request. Measuring the 

model’s response to malicious requests allowed 

us to implement mitigations which make Code 

Llama 70B safer than other available models, while 

remaining helpful. For detailed information on model 

training, architecture and parameters, evaluations, 

responsible AI and safety refer to our research paper 

and Responsible Use Guide. 
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2.	 Instruction model use case: Add more instruction 

data to improve the model’s ability to follow 

instructions, extend capability to understand 

non-English instructions, create standalone 

code bots and integrate into existing 3rd party 

products, etc.

Both the foundation and instruction Code Llama 

models are not designed to be used as a large 

language model for general purpose - for such 

scenarios refer to Llama 2. 

Foundation model use case

This model could be used for further research 

exploration on specialized foundation large 

language models for programming. When 

fine-tuning Code Llama, we refer users to the 

Responsible Use Guide for Llama 2, which provides 

essential guidance on responsible development 

of downstream models, including on (i) defining 

content policies and mitigations; (ii) preparing 

data; (iii) fine-tuning the model; (iv) evaluating and 

improving performance; (v) addressing input- and 

output-level risks; and (vi) building transparency 

and reporting mechanisms in user interactions.

Additionally, developers should consider 

code-specific best practices when building on top of 

Code Llama in line with their specific use case.

Define content policies for use case

•	 A content policy defines what content is allowable 

based on the intended use and deployment 

context. This may also outline limitations on 

producing potentially problematic  content. In 

the code domain, models should avoid producing 

malware, virus, or malicious code. Developers 

should consider how bad actors prompt the 

model to produce these results. 

•	 These policies will dictate the data needed, 

annotation requirement, and goals of safety  

fine-tuning. They may also be applied in input- 

and output-level safeguards as additional  

safety mechanisms. 

Evaluations & benchmarks

•	 Models should be evaluated against their 

intended use and end user requirements. 

Specifically, code models should be evaluated 

against code-specific benchmarks. As a resource, 

you can find various benchmarks on Papers with 

Code: Code Generation Benchmarks.

•	 We recommend evaluating the cybersecurity 

safety of coding models with the CyberSecEval 

(GitHub) which was released as part of our open 

trust and safety tools and evaluations project.

•	 Non code-specific safety evaluations are also 

recommended, for example, code models can be 

evaluated on benchmarks such as TruthfulQA, 

ToxiGen and BOLD. 

ADDENDUM
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Red teaming & fine-tuning considerations

•	 The data should be representative of the  

end users’ requirements. For example, if the 

model is meant for Javascript generation,  

the dataset chosen to fine-tune with should 

be Javascript-focused. Developers should also 

consider examining and placing restrictions  

on any potentially malicious or nefarious code  

in the data.

•	 Developers should ensure the security and 

robustness qualities of the training code dataset 

matches the security requirements of the output 

and the systems where the output code will be 

integrated based on a specific use case.

•	 Developers should perform safety studies on 

code-specific areas such as intentional malware 

generation and the unintentional introduction 

of vulnerable code. Working with red-teaming 

domain experts can help developers evaluate 

the model’s capacity to lower the bar for writing 

malicious code when the prompt intent is clear 

and the output goes beyond resources already 

publicly available on the Internet. 

•	 Developers and end-users that use the model as 

an assistant for software development should 

be aware of the model’s overall language safety. 

Performing safety studies and comparing results 

to representative benchmarks can identify 

particular categories of content risk. To mitigate 

those risks, collect relevant fine-tuning data that 

is not within the test set, and fine-tune the model 

by controlling for higher measured safety while 

maintaining helpfulness.

•	 If the model’s output will be used in production 

systems, developers should ensure the code that 

the model is trained on is free of relevant security 

vulnerabilities. Developers and end-users that 

use the model as an assistant for software 

development should  continue to follow security 

best practices.

System-level safeguards

•	 As for other LLM use cases, we recommend 

adding appropriate system-level safeguards in 

addition to the model-level built-in alignment. 

•	 As part of our open trust and safety tools, we 

released Code Shield, an insecure code detector 

that can be used at inference to prevent bad 

coding practices. Visit Code Shield Github for 

more information on how to integrate it into  

your application. 

When using Code Llama in particular, it is important 

to keep in mind that Code Llama is specialized for 

code-related tasks and may not be appropriate as a 

foundation model for other task families, e.g, general 

language model. We note that for downstream tasks 

where the Python programming language is more 

relevant, it may be more appropriate to use our Code 

Llama - Python model variant. Code Llama and Code 

Llama - Python are not trained with instruction 

data hence are not designed to follow instruction in 

natural language. Any use of these models to perform 

general natural language tasks is not recommended 

to avoid potential misuse of the models.

ADDENDUM
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2Instruction model use case

This model could be used for further applied 

research and testing of specialized large language 

models for programming. Code Llama - Instruct 

has the ability to understand instructions in 

natural language. When using Code Llama for code 

generation tasks, we recommend developers use 

our Code Llama - Instruct variants, which have 

been fine-tuned to generate helpful and safe 

answers to users. Consult the full Responsible  

Use Guide for best practices with regards to 

generally addressing input- and output-level 

risks and building transparency and reporting 

mechanisms in user interactions, as relevant to  

a specific use case.

For both use cases, users must abide by our 

Acceptable Use Policy.

Reporting resources for developers

If you have any information about issues, 

violations, or problems, please help keep our 

communities safe by using our reporting resources.

•	 Reporting issues with the model via our 

GitHub repo

•	 Reporting risky content generated by the 

model via our Developer portal

•	 Reporting bugs and security concerns via our 

Bug Bounty

ADDENDUM
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