
Responsible
Use Guide

Resources and best practices for
responsible development of products

built with large language models

Meta Llama

Contents

Open Innovation							 1

	 How to use this guide						 3

Overview of responsible AI & system design				 4

	 Responsible AI considerations				 4

	 Mitigation points for LLM-powered products	 5

Development of the foundation model				 6

Responsible LLM product development stages			 7

	 Determine use case						 7

		 Define content policies 						 8

		 Understand alignment-helpfulness trade-offs			 8

	 Model-level alignment							 9

	 Step 1: Prepare data			 10

	 Step 2: Train the model						 11

		 Reinforcement Learning from Human Feedback (RLHF)	 12

		 Reinforcement Learning from AI Feedback (RLAIF)	 12

	 Step 3: Evaluate and improve performance 			 12

		 Red teaming best practices				 13

		 Privacy adversarial attacks				 14

	 System-level alignment				 14

		 Mitigating risks at the input level				 15

		 Mitigating risks at the output level		 16

	 Evaluate effectiveness 					 17

		 Build transparency and reporting mechanisms
	 in user interactions						 17

	 Feedback & reporting mechanisms 			 17

	 Transparency & control best practices 			 18

Resources for developers						 19

Combining the components of responsible generative AI		 21

Addendum: Introducing Code Llama		 22

	 Foundation model use case				 23

	 Instruction model use case				 25

We believe that the power of AI will be harnessed to address global

challenges, and unlocking that power responsibly will require

democratization of access and collaboration on risk management.

We want to empower developers in every industry on a global

scale to drive breakthroughs, create new products and solutions,

and benefit from accelerations in technological advancement and

economic growth.

Meta is committed to open science because
we believe that a vibrant AI-innovation
ecosystem will push the frontiers of scientific
discovery and potentially revolutionize a wide
array of sectors from education to agriculture,
and climate management to cybersecurity.

1April 2024AI at Meta

Meta has open sourced code and datasets for

machine translation, computer vision, and fairness

evaluation, while contributing to the infrastructure

of the AI-developer community with tools like

PyTorch, ONNX, Glow, and Detectron. In the past,

we have also made our cutting-edge large language

models (LLMs) Llama 1 and OPT-175B available to

the scientific community through research releases

which have spurred research in model efficiency,

medicine, and conversational safety studies on

evaluation methods, de-biasing techniques, and

sources of hallucinations in LLMs.

We also took an important step toward advancing

access and opportunity in the creation of AI-powered

products and experiences with the launch of Meta

Llama 2. The open release of these models to the

research and business community laid the foundation

for the next wave of community-driven innovation in

generative AI. We’ve seen an incredible response

thus far with millions of download requests in the

time since its release.

Democratization of access will put these models

in more people’s hands, which we believe is the

right path to ensure that this technology will benefit

the world at large. We take our commitment to

building responsible AI seriously, cognizant of the

potential privacy and content-related risks, as well

as societal impacts.

Meta is proud to have supported the Llama 2 developer

community by building state-of-the-art responsibility

tooling that makes it easier than ever to build and release

models responsibly. Learn more about the open source

tools we share with developers to help them build

responsibly.

We’re also excited to release an early look at the next

generation of Llama, Meta Llama 3 which, like Llama 2,

is licensed for commercial use. This release of

Llama 3 features both 8B and 70B pretrained and

instruct fine-tuned versions to help support a broad

range of application environments.

We envision Llama models
as part of a broader system
that puts the developer in the
driver seat.

Llama models will serve as the foundational piece of

a complex system that developers design with their

unique end goals in mind. As part of this system

centric approach, and to support responsible

deployment of these models, we have updates to our

open trust and safety project including a Meta Llama

Guard 2 model that supports a broader taxonomy for

input/output prompt filtering.

2April 2024AI at Meta

https://ai.meta.com/blog/nllb-200-high-quality-machine-translation/
https://ai.meta.com/research/publications/segment-anything/
https://ai.meta.com/blog/casual-conversations-v2-dataset-measure-fairness/
https://ai.meta.com/blog/casual-conversations-v2-dataset-measure-fairness/
https://ai.meta.com/blog/large-language-model-llama-meta-ai/
https://ai.meta.com/blog/democratizing-access-to-large-scale-language-models-with-opt-175b/
https://arxiv.org/pdf/2301.00774.pdf
https://www.science.org/doi/10.1126/science.ade2574
https://arxiv.org/pdf/2211.09110.pdf
https://arxiv.org/pdf/2305.13862.pdf
https://arxiv.org/pdf/2305.14552.pdf
https://ai.facebook.com/responsible-ai/
https://llama.meta.com/purple-llama/
https://llama.meta.com/purple-llama/

The recommendations included in this guide reflect

current research on responsible generative AI. We

expect these to evolve as the field advances and

access to foundation models grows, inviting further

innovation on AI safety. Decisions to implement

best practices should be evaluated based on the

jurisdiction where your products will be deployed and

should follow your company’s internal legal and risk

management processes.

How to use this guide

This guide is a resource for developers that outlines

common approaches to building responsibly at each

level of an LLM-powered product. It covers best

practices and considerations that developers should

evaluate in the context of their specific use case and

market. It also highlights some mitigation strategies

and resources available to developers to address risks

at various points in the system. These best practices

should be considered holistically because strategies

adopted at one level can impact the entire system.

3April 2024AI at Meta

Responsible AI considerations

Helping to ensure that generative AI technology

does not produce content that could cause harm is of

paramount importance. Generative AI is developing

rapidly and is being driven by research, open

collaboration, and product releases that are putting

this technology in the hands of people globally.

Growth at this scale presents novel challenges for

the responsible deployment of AI, yet many of the

principles of responsibility remain the same as for any

other AI technology. These considerations, core to

Meta’s approach to responsible AI, include fairness

and inclusion, robustness and safety, privacy and

security, and transparency and control, as well as

mechanisms for governance and accountability. LLMs

are one of many AI tools, and their risks should be

evaluated through these lenses according to how they

will be used.

Foundation models and generative AI systems

represent advancements in power and accuracy

compared to predecessor technologies. The increase

in the performance, utility, and flexibility of these

models will likely lead to their ubiquity, as the value

they bring to some pre-existing use cases may

outweigh operational costs of deploying the systems.

The ability to generate completely new content also

opens up new use cases that must be evaluated

for the types of risks they may present. There are

potential risks related to the misuse of this

technology that have already surfaced online, such as

the creation or proliferation of illegal content, content

which may be objectionable or hateful, or content

that may result in the provision of unqualified advice.

These instances may increase as generative AI tools

become more accessible.

For our own, on-platform generative AI offerings,

Meta is implementing safety measures to address

context-specific risks. These mitigations are layered

across different intervention points beyond those

that can be assessed and mitigated in the foundation

model. With our release of Llama 3 paired with Llama

Guard 2, we are beginning to extend this vision of a

layered approach to safety to our open models

 as well.

As discussed in our research paper on Llama 2,

some mitigations applied at early stages in the

development process can be detrimental to the

performance and safety of the model, and some

risks may be better addressed at later points in the

product development cycle. Our vision for layered

model safety helps to empower developers to

make decisions about balancing these trade-offs.

Developers of generative AI-powered features that

leverage open source models will have more power to

ensure that their products are safe and benefit end

users, while taking a holistic view of responsible AI

across the entire product development cycle.

Overview of responsible
AI & system design

4April 2024AI at Meta

https://ai.meta.com/responsible-ai/

Mitigation points for LLM-
powered products

A foundation model is a general purpose AI

technology whereas an LLM-powered product has

a defined use case and performs specific tasks

to enable an intended use or capability through a

user interface, sometimes embedded in products.

An LLM-powered system encompasses both the

foundation model and accompanying input-output

safeguards, and a number of product-specific

layers. At various points in the product development

lifecycle, developers make decisions that shape the

objectives and functionality of the feature, which can

introduce potential risks. These decision points also

provide opportunities to mitigate potential risks. It

is critical that developers examine each layer of the

product to determine which potential risks may arise

based on the product objectives and design, and

implement mitigation strategies accordingly.

Model-level safety: Model-level safety concerns the

data preparation and processing best practices and

human feedback or alignment practices for safety at

the foundation and fine-tuned model level.

System-level safety: System-level safety is the venue

for the most context-specific safety mitigations

dependent on user interactions. Developers looking

to craft safety mitigations specifically for their use

case with the goal of offering their users the best

product experience should explore these options.

You can learn more about our layered approach to

safety by visiting our resources for Meta Llama open

trust and safety.

The following section presents responsible AI

considerations for the different stages of LLM

product development. At each of these levels, we

highlight best practices for mitigating potential risks.

5April 2024AI at Meta

Meta Llama 3, like Llama 2, is licensed for commercial

use. This release of Llama 3 features both 8B and 70B

pretrained and instruct fine-tuned versions to help

support a broad range of application environments.

This next generation of Llama demonstrates state-

of-the-art performance on a wide range of industry

benchmarks and offers new capabilities, including

improved reasoning. With the developer in mind, and

in support of our longstanding open approach, we

wanted to put Llama 3 in the hands of the community

as soon as possible to enable early development and

kickstart this next wave of innovation.

In addition to performing a variety of pretraining

data-level investigations to help understand the

potential capabilities and limitations of our models,

we applied considerable safety mitigations to the

fine-tuned versions of the model through supervised

fine-tuning, reinforcement learning from human

feedback (RLHF), and iterative red teaming (these

steps are covered further in the section - Fine-tune

for product).

More information on Llama 3 model architecture and

parameters and pretrained evaluations are contained

in the model card. The model card also provides

information about the capabilities and limitations of

the models.

During pretraining, a model builds its understanding

of the statistical patterns across the sample of

human language contained in its training data.

The training datasets for Llama are sourced from

a broad set of diverse, publicly available online

data. This training corpus is mostly English, which

is consistent with the current, intended use of

the model. For each dataset used in training, we

followed Meta’s standard privacy review processes.

And for our pretraining data we made an effort

to remove data from certain sources known to

contain a high volume of personal information about

private individuals. After pretraining, the model can

reproduce everything from simple grammatical rules

to complex nuances like context, sentiment, and

figurative language. However, the model does not

gain knowledge or generate beliefs about the world

in the way humans do. It only learns to predict the

next word in a sentence based on the patterns in its

training data.

If you’re going to use the pretrained model, we

recommend tuning it by using the techniques

described in the next section to reduce the likelihood

that the model will generate outputs that are in

conflict with your intended use case and tasks. If

you have terms of service or other relevant policies

that apply to how individuals may interact with your

LLM, you may wish to fine-tune your model to be

aligned with those policies. It may also be necessary

to establish new terms of service and policies specific

to LLMs, or notify users about how their data or

feedback provided will be used in fine-tuning. We also

recommend using Llama Guard 2 for enhanced safety

performance.

Development of the
foundation model

6April 2024AI at Meta

https://about.meta.com/privacy-progress/

Developers will identify a specific product use case

for the released model, and are responsible for

assessing risks associated with that use case and

applying best practices to ensure safety. This section

outlines the considerations and mitigation strategies

available at each stage of product development

and deployment.

At a high level these stages include:

1.	 Determine use case

2.	 Model-level alignment

3.	 System-level alignment

4.	 Build transparency and reporting
mechanisms in user interactions

Responsible LLM product
development stages

1Determine use case

An important decision in the development process

is which use case(s) to focus on. Most developers

using this guide already have a use case in mind,

such as customer support, AI assistants, internal

productivity tools, entertaining end-user experiences,

or research applications. If you’re a developer who

is not certain of a particular use case for which you

would want to use the model, consider focusing on

use cases that improve the lives of people and society,

taking into consideration different ethical principles

and values. Developing or adopting an internal risk

assessment process can help identify potential

risks for a specific use case and should focus on

how your product’s end users and others could be

affected. This understanding is critical for evaluating

in-context safety for your product deployment, and

can take forms such as surveys and interviews of

potential users or market analysis of similar product

applications.

If you are new to considerations of values in the

development and deployment of AI, refer to the

principles and guidance on risk management released

by academic and expert institutions, such as:

•	 OECD’s AI Principles

•	 NIST’s Trustworthy and Responsible AI

Resource Center

7April 2024AI at Meta

https://oecd.ai/en/ai-principles
https://airc.nist.gov/Home
https://airc.nist.gov/Home

applying content policies falsely (i.e., false positives

and false negatives.) These errors will necessarily

mean that a model will either be more aligned and

less helpful or less aligned and more helpful.

To illustrate: Consider a content policy against

assistance with scams. If a user submits a prompt

for “How does a ponzi scheme operate?” the model

can either refuse to substantively answer (arguably

the most aligned, least helpful option) or provide a

complete, detailed answer (arguably the most helpful,

least aligned option). Consider the same evaluation,

but with the prompt “How to protect yourself from

identity theft.”

As the model’s rate of identifying and stopping

unaligned content grows, its likelihood of falsely

stopping aligned content–and thereby reducing its

overall helpfulness–grows in tandem. In other words,

you’ll need to look elsewhere to learn about stopping

identity theft. Turning down the dial–so that more

unaligned content gets through–will likely have the

knock-on effect of increasing the likelihood that the

model generates helpful content. You’ll learn about

protecting your identity from thieves.

Avoiding alignment-helpfulness trade-offs is

probably impossible. But developers should exercise

discretion about how to weigh the benefits of

alignment and helpfulness for their specific use case

and audience. We look forward to exploring more

ways to give developers greater control over this

important aspect of model building.

Define content policies

Based on the intended use and audience for your

product, a content policy will define what content

is allowable and may outline safety limitations on

producing illegal, violent, or harmful content. These

limits should be evaluated in light of the product

domain, as specific sectors and regions may have

different laws or standards. Additionally, the needs

of specific user communities should be considered as

you design content policies, such as the development

of age-appropriate product experiences. Having

these policies in place will dictate the data needed,

annotation requirements, and goals for safety fine-

tuning, including the types of mitigation steps that

will be implemented. Defining these policies will be

used for labeling data in later stages when using

RLHF and in additional product layers, such as making

enforcement decisions for user inputs and model

outputs.

If you are new to considerations of content policies,

refer to commonly used policies in the industry such

as the taxonomy proposed by MLCommons.

Understand alignment-helpfulness
trade-offs

While overall model safety should keep improving

as models advance, some trade-off between model

helpfulness and model alignment is likely unavoidable.

That’s because any prediction–Is this content aligned?

Is this content unaligned?–carries at least some risk of

8April 2024AI at Meta

https://mlcommons.org/2024/04/mlc-aisafety-v0-5-poc/

Model-level alignment

Product-specific fine-tuning enables developers to

leverage pretrained models or models with some fine-

tuning for a specific task requiring only limited data

and resources. Even with initial fine-tuning performed

by Meta, developers can further train the model with

domain-specific datasets to improve quality on their

defined use case. Fine-tuning adapts the model to

domain- or application-specific requirements and

introduces additional layers of safety mitigations.

Examples of fine-tuning for a pretrained LLM include:

•	 Text summarization: By using a pretrained language

model, the model can be fine-tuned on a dataset

that includes pairs of long-form documents and

corresponding summaries. This fine-tuned model

can then generate concise summaries for new

documents.

•	 Question answering: Fine-tuning a language

model on a Q&A dataset such as SQuAD (Stanford

Question Answering Dataset) allows the model to

learn how to answer questions based on a given

context paragraph. The fine-tuned model can then

be used to answer questions on various topics.

•	 Sentiment analysis: A model can be fine-tuned

on a dataset of labeled text reviews (positive

or negative sentiment) to recognize sentiment and

perform analysis to understand user satisfaction.

By training the model on this task-specific dataset,

it can learn to predict sentiment in text accurately.

These examples showcase
how fine-tuning an LLM
can be used to specialize
the model’s capabilities for
specific use cases, improving
its performance and making
it more suitable for specific
applications. The choice of
the foundation model and the
task-specific dataset plays a
crucial role in achieving the
desired results.

2

9April 2024AI at Meta

The responsible fine-tuning flow

Here are the general steps needed to responsibly fine-

tune an LLM for alignment, guided at a high

level by Meta’s Responsible AI framework:

1.	 Prepare data

2.	 Train the model

3.	 Evaluate and improve performance

Step 1: Prepare data

Developing downstream applications of LLMs begins

with taking steps to consider the potential limitations,

privacy implications, and representativeness of

data for a specific use case. Begin by preparing and

preprocessing a clean dataset that is representative

of the target domain. This involves tokenizing the text,

handling special characters, removing unnecessary

information, and splitting the dataset into training,

validation, and testing sets. This step may also involve

ensuring that data are representative of the end users

in the deployment context, for instance, by ensuring

there are enough examples from relevant languages if

you plan to deploy your product in a

non-English speaking market. Representativeness

of data is dependent on the use case and should be

assessed accordingly.

When fine-tuning for a specific use case it can be

beneficial to examine training data for biases, such

as gender, racial, linguistic, cultural or other biases.

10April 2024AI at Meta

https://ai.meta.com/blog/facebooks-five-pillars-of-responsible-ai/

 Step 2: Train the model

Fine-tuning involves training the model for a limited

number of iterations. Once a pretrained model

is loaded in the environment for fine-tuning, the

training process involves setting up hyperparameters

like epochs, batch size, and learning rate. The data

are passed through the model, loss is computed, and

weights are updated through backpropagation. The

training progress is monitored using a validation set,

and hyperparameters are adjusted as necessary.

Fine-tuning an LLM for safety can involve a number

of techniques, many of which the research paper on

Llama 2 describes in greater depth. These techniques

can include:

•	 Supervised Fine-Tuning (SFT): Supervised fine-

tuning using data annotated across helpfulness

and safety.

•	 Reinforcement Learning from Human Feedback

(RLHF) or AI Feedback (RLAIF): Training safety

and helpfulness reward models to support

RLHF techniques iteratively improves models

and makes them more robust to jailbreaking

techniques.

•	 Targeted Safety Context Distillation: Context

distillation for safety helps the model associate

adversarial prompts with safe responses by

prefixing a safe preprompt such as “You are a

safe and responsible assistant” to the adversarial

prompt, followed by fine-tuning on new outputs.

THE RESPONSIBLE FINE-TUNING FLOW

Understanding these patterns is important but it may

not always be optimal to filter out all problematic

content in training data due to the unintended

consequences this filtering may have on subsequent

performance and safety mitigations, such as prompt

engineering. Instead of removing data, focusing on

the representativeness of the data can help prevent

a fine-tuned model from perpetuating biases in its

generated outputs; what is considered representative

will depend on the specific context in which a product

is deployed. Developers should also pay attention

to how human feedback and annotation of data may

further polarize a fine-tuned model with respect

to subjective opinions, and take steps to prevent

injecting bias in annotation guidelines and to

mitigate the effect of annotators’ bias. Resources

on this topic include:

•	 Don’t Blame the Annotator: Bias Already Starts in

the Annotation Instructions

•	 Annotators with Attitudes: How Annotator Beliefs

And Identities Bias Toxic Language Detection

There are several other risks to consider, such as

overfitting, privacy, and security. To mitigate these

risks, carefully design the fine-tuning process by

curating a high-quality dataset that is representative

of your use case, conduct rigorous evaluations, and

test your fine-tuned model’s potential use via red

teaming (covered in step four - Evaluate and

improve performance).

11April 2024AI at Meta

https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/
https://arxiv.org/pdf/2205.00415.pdf
https://arxiv.org/pdf/2205.00415.pdf
https://aclanthology.org/2022.naacl-main.431/
https://aclanthology.org/2022.naacl-main.431/

performance and safety, and iterating until satisfied

with the model’s performance using holdout test

datasets.

There are many complementary types of evaluations

that are useful for measuring risks in models,

including automatic benchmarks, manual annotations

by human raters, and evaluations using an LLM

itself as a rater. The Holistic Evaluation of Language

Models discusses some of the most commonly used

automatic benchmarks. As the industry matures, we

are excited for evaluation platforms to emerge to

help drive safety standardization, such as through

the MLCommons AI Safety working group. Evaluation

strategies and processes to improve performance can

include:

•	 Automatic evaluation leverages automatic

benchmarks and classifiers to judge the output

with respect to a specific category of risk.

•	 Manual evaluation leverages human annotators

or subject matter experts to judge the model’s

output.

•	 Red teaming is a systematic effort to identify

model vulnerabilities or emergent risks by

crafting prompts that may elicit undesirable

behavior or outputs. This type of manipulation

of the model can be used to test safeguards and

attempts to “jailbreak” the model.

THE RESPONSIBLE FINE-TUNING FLOW

Reinforcement Learning from Human
Feedback (RLHF)

To align the output of LLMs with user expectations

and values, one approach that developers should

consider is implementing Reinforcement Learning

from Human Feedback (RLHF) mechanisms. This

involves collecting ranking data from trained

annotators or users (given a model input and several

generated outputs, ranking them from best to worst

according to policies), training a reward or helpfulness

model to act as a proxy of human feedback, and

then optimizing the LLM to maximize the reward/

helpfulness model score with reinforcement learning.

Reinforcement Learning from AI
Feedback (RLAIF)

Reward models can also be improved and tailored to

specific policies by using Reinforcement Learning

from AI Feedback (RLAIF). The fine-tuned LLM itself

can be used to create synthetic ranking data for

reward model training. Given a model input, response

pairs and relevant guidelines, the LLM predicts

which response would best follow the guidelines.

The synthetic reward modeling data are then used to

augment the reward model’s training data.

Step 3: Evaluate and improve performance

The final stage is to evaluate the fine-tuned model on

a test set to measure its performance on the specific

task and against safety benchmarks, according to

the use case. This includes analyzing the model’s

strengths and weaknesses based on evaluation

results, gathering more data to further enhance

12April 2024AI at Meta

https://crfm.stanford.edu/helm/latest/
https://crfm.stanford.edu/helm/latest/

Red teaming best practices

Red teams should adopt systematic approaches

to testing and measurement, while estimating

real-world behaviors and threat vectors to the

extent possible.

•	 Diversity: Red teams should include a diverse

set of people from a range of professional

backgrounds that are representative of a broad

group of potential users and demographics. Red

teams can be composed of internal employees,

experts, or community members.

•	 Subject matter expertise: Subject matter experts

should judge model responses based on their

familiarity with the identified risk categories and

label responses that fall under each category.

•	 Regular testing: The model should undergo

regular testing to determine whether or not

mitigations against attacks are effective.

This requires some form of automated

evaluation, either with human labeling, which

can be expensive, or with classifiers trained

to recognize responses that fall under the

risk categories.

13April 2024AI at Meta

System-level alignment

Without proper safeguards at the input and output

levels, it is hard to ensure that the model will respond

properly to adversarial inputs and will be protected

from efforts to circumvent content policies and

safeguard measures (“jailbreaking”). Mitigations at

the output level can also act as a safeguard against

generating high-risk or policy-violating content.

Enforcement of content policies can be managed

through automated systems and manual analysis

of samples and reports. Automated systems may

include machine learning and rule-based classifiers

for filtering prompt inputs or system outputs. Usage

or consequence policies may be defined for when

users repeatedly violate those policies.

Enforcement of content
policies can be managed
through automated systems
and manual analysis of
samples and reports.

Automated systems may include machine learning

and rule-based classifiers for filtering prompt inputs

or system outputs. Usage or consequence policies

may be defined for when users repeatedly violate

those policies.

3
Privacy adversarial attacks

Additional privacy protections should be considered

when releasing the product, to test whether bad

actors may be able to improperly extract information.

A privacy adversarial attack is a method where

attackers can exfiltrate data from a model. For

example, common adversarial attacks may include

membership inference attacks on a model to predict

whether or not a particular sample was in the training

data, or model inversion attacks to reconstruct

representative views of a subset of examples.

Prompt injection attacks are attempts to circumvent

content restrictions to produce particular outputs.

A red team privacy adversarial attack conducted by a

company may be able to demonstrate the feasibility

of such attacks. In scenarios where companies

fine-tune models using personal data (pursuant to

applicable privacy laws), they should consider testing

the outputs to see if the model memorized particular

data. This approach may be especially useful for

testing models that are intended to be deployed as

AI assistants or agents.

14April 2024AI at Meta

https://arxiv.org/pdf/2007.07646.pdf
https://arxiv.org/pdf/2302.12173v2.pdf

•	 Prompt engineering: Direct modifications of

the user inputs are an option for guiding the

model behavior and encouraging responsible

outputs, by including contextual information or

constraints in the prompts to establish background

knowledge and guidelines while generating the

output. Modifications may be done in a variety

of ways, such as with automated identification

and categorization, assistance of the LLM itself,

or rules engines. These can help improve the

user experience by creating more diversity and

expressiveness from the model. For example,

prompt engineering can be leveraged to direct the

model to include more diverse references or apply

a certain tone or point of view. Prompt engineering

rules may be hard coded or probabilistic.

Mitigating risks at the input level

The input refers to the information provided by

the user and passed to the system. The developer

does not control what the user inputs. Without

implementation of input filters and safeguards, even

advanced models can potentially be manipulated to

generate harmful or misleading outputs or violate

content policies. Although safeguards to protect

privacy and prevent potential harm can be developed

by tuning the model, it should be expected that even

after rigorous design and testing, those safeguards

will not have perfect performance and may be

subverted. Additional safeguards include direct

filtering and engineering of the inputs. For these to

be effective, model inputs must be well-formatted.

These approaches include:

•	 Prompt filters: Even when inputs may not

violate content policies, the model may produce

problematic engagements or outputs. In these

cases, it may be appropriate to filter, block, and

hard code responses for some inputs until the

model can respond in the intended way. This

tactic may come with tradeoffs to the user’s

experience and agency in engaging with the

system. Thus, the safety benefits of such

restrictions or modifications should be weighed

against those costs, until more robust solutions

are developed.

Alongside prompts, it
might be beneficial to
provide instructive sample
inputs and outputs that
illustrate the desired
responsible behavior.

15April 2024AI at Meta

unreasonably restrict the usage of your model.

Words often have context-dependent meanings,

and terms that could be sexually suggestive, for

example, may also be used in medical contexts.

Content policies will help articulate the specifics

between permitted and prohibited topics to users.

•	 Classifiers: The more effective, but also more

difficult, approach is to develop classifiers that

detect and filter outputs based on the meaning

conveyed by the words chosen. Classifiers,

when properly trained on known examples of a

particular sentiment or type of semantic content,

can become highly effective at identifying novel

instances in which that sentiment or meaning

is expressed.

Mitigating risks at the output level

Based on the downstream use case, you can apply

several approaches for detecting and filtering the

generated output of models for problematic or policy-

violating content. Here are some considerations and

best practices for filtering outputs. Any output filter

mitigation should include all languages that are used

in the region where your product is available.

•	 Blocklists: One of the easiest ways to prevent the

generation of high-risk content is to compile a

list of all the phrases that your model should not,

under any circumstances, be permitted to include

in a response. Many words are easily identifiable

as problematic; slurs, for example, are typically

offensive no matter their context. While blocklists

are attractive for their simplicity, they may

16April 2024AI at Meta

Evaluate effectiveness

While prompt filtering and engineering are critical

safety mitigations, it’s important to monitor

effectiveness and avoid unintended consequences.

Some best practices include:

•	 Test for unintended outcomes. Take

caution that prompt engineering doesn’t

inadvertently create other issues. Test

end-to-end performance after any prompt

engineering to ensure desired behavior.

•	 Evaluate effectiveness of safeguards. Many

publicly available datasets offer collections

of prompts that are designed to benchmark

against specific concerns when used as inputs.

After model responses are collected, they can

be evaluated by using standardized metrics.

•	 Adjust for different languages. Prompt

filtering and engineering mitigations should

include all languages that are used in the

region where your product is available; the

effectiveness of these mitigations may be

dependent on linguistic and community-level

nuances. Llama was trained primarily on data

in English, in accordance with its intended

use, so it is critical to carefully evaluate any

mitigations in other languages.

Build transparency and reporting
mechanisms in user interactions

Releasing an LLM-powered feature for users to

interact with can reveal new use cases as well as

new concerns. User interactions can provide critical

feedback, which can be used for reinforcement

learning (discussed in a previous section). This is

also an opportunity to provide appropriate notice,

transparency, and control to users, which can lead to

greater satisfaction and trust in the feature.

Feedback & reporting mechanisms

Facilitating user interaction with appropriate

feedback or reporting mechanisms is key to ensuring

quality output. Feedback mechanisms can be as

simple as positive or negative (thumbs up or thumbs

down), and tailoring feedback to the types of issues

that may be foreseeable based on a company’s use

case (for example, AI assistants) can enhance the

quality of feedback. This feedback can be used by

developers to improve the model in more targeted

ways. Providing an option for freeform feedback

within a reporting mechanism can also reveal new or

unanticipated concerns raised by users. Furthermore,

users can identify and highlight errors, unsafe

behaviors, or suboptimal actions that the model

might not recognize on its own. Developers can

further train the model with this feedback to improve

performance and avoid repeating mistakes. Product

4

17April 2024AI at Meta

developers should review feedback by monitoring the

rate that users report model outputs and by manually

reviewing those reports and selected samples of

model outputs.

Transparency & control best practices

To ensure high-quality feedback and provide end

users with notice and choice about their interactions

with your AI assets, developers should consider the

following practices for user interactions:

•	 Transparency: Developers should consider ways

to provide transparency to end users regarding

potential risks and limitations of the system

prior to or at the time of user interaction. For

instance, notice to users that they are interacting

with an AI-powered chatbot may increasingly

be required in certain markets, and is a best

practice to address concerns that may be related

to false or incorrect information. Developers

should neither claim nor imply that an AI agent is

human, especially when building and deploying

anthropomorphized interfaces. Context, intent,

sensitivity, and likelihood to deceive are additional

critical factors in ascertaining when and how

to be transparent. Work with your appropriate

advisors to determine the types of transparency

that should be provided to users, including

whether users should be informed that their

responses may be used to fine-tune a model.

Developers should also consider the use of

system cards to provide insight into their AI

system’s underlying architecture and explain how

a particular AI experience is produced. Further

best practices are outlined in the Partnership on

AI’s Responsible Practices for Synthetic Media.

•	 Control mechanisms: Additional controls could

include giving users the option to customize the

outputs generated by an LLM. For example, a

user could select or reject outputs from a list of

multiple options. Offering editing capabilities

can also enhance a user’s sense of agency

over outputs, and developers should consider

education flows that can set a user up for

success, such as offering prompt suggestions or

explanations of how to improve an output.

18April 2024AI at Meta

https://ai.meta.com/research/publications/system-level-transparency-of-machine-learning/
https://syntheticmedia.partnershiponai.org/#landing
https://syntheticmedia.partnershiponai.org/#landing

There is a value chain emerging to support the

responsible training and use of LLMs, which we

believe will be advanced through more open

releases and sharing of best practices, tools, and

benchmarking. A growing number of researchers,

platforms, companies, and developer communities

are contributing to this ecosystem. We expect more

tools for the responsible development of LLM to

become available over time and are committed to

fostering more open exchange of safety research and

tools to support developers.

It is critical to remain aware
of the latest versions of
models and use the most
current version to get the
best results.

Our partnership to make Llama available on the Azure

Model Catalog will enable developers using Microsoft

Azure to leverage their cloud-native tools for content

filtering and safety features. Below, we provide a

few notable hubs and implementation resources for

developers, but this list is not exhaustive. Microsoft

also offers a repository of Responsible AI Resources.

Filters and classifiers:

•	 Meta Llama Guard and other solutions

•	 Content-filtering systems from Azure, supporting

a range of languages: learn.microsoft.com/

en-us/azure/cognitive-services/content-safety/

overview

•	 Filter lists for generation of problematic words:

github.com/LDNOOBW/naughty-words-js

•	 Recipes for safety in open-domain Chatbots,

including a sensitive topics classifier: parl.ai/

projects/safety_recipes/

Platforms for tools and evaluations:

•	 MLCommons AI Safety (v0.5): mlcommons.

org/2024/04/mlc-aisafety-v0-5-poc/

•	 Meta Llama Cybersecurity evaluations

•	 Benchmarking of LLMs by Stanford’s Center for

Research on Foundation Models, HELM: crfm.

stanford.edu/helm/latest/

•	 EleutherAI LLM Evaluation Harness: github.com/

EleutherAI/lm-evaluation-harness

•	 Hugging Face Hub which hosts open source

models, datasets, and is a space for developers

to share safeguards and access benchmarking

information: huggingface.co/docs/hub/index

Resources for developers

19April 2024AI at Meta

https://learn.microsoft.com/en-us/azure/cognitive-services/content-safety/overview
https://www.microsoft.com/en-us/ai/responsible-ai-resources
https://llama.meta.com/purple-llama/
https://learn.microsoft.com/en-us/azure/cognitive-services/content-safety/overview
https://learn.microsoft.com/en-us/azure/cognitive-services/content-safety/overview
https://learn.microsoft.com/en-us/azure/cognitive-services/content-safety/overview
https://github.com/LDNOOBW/naughty-words-js
https://parl.ai/projects/safety_recipes/
https://parl.ai/projects/safety_recipes/
https://mlcommons.org/2024/04/mlc-aisafety-v0-5-poc/
https://mlcommons.org/2024/04/mlc-aisafety-v0-5-poc/
https://llama.meta.com/purple-llama/
https://crfm.stanford.edu/helm/latest/
https://crfm.stanford.edu/helm/latest/
https://github.com/EleutherAI/lm-evaluation-harness
https://github.com/EleutherAI/lm-evaluation-harness
https://huggingface.co/docs/hub/index

Reporting resources

If you have any information about issues, violations,

or problems, please help keep our communities safe

by using our reporting resources.

•	 Reporting issues with the model: github.com/

facebookresearch/llama

•	 Reporting risky content generated by

the model: developers.facebook.com/

llama_output_feedback

•	 Reporting bugs and security concerns:

facebook.com/whitehat/info

•	 Reporting violations of the Acceptable

Use Policy or unlicensed uses of Llama:

LlamaUseReport@meta.com

20April 2024AI at Meta

http://github.com/facebookresearch/llama
http://github.com/facebookresearch/llama
http://developers.facebook.com/llama_output_feedback
http://developers.facebook.com/llama_output_feedback
http://facebook.com/whitehat/info
mailto:LlamaUseReport@meta.com

Each stage of model development presents

opportunities to enhance the safety of your AI

feature. However, it’s crucial to acknowledge the

interconnectedness of these stages and how the

decisions made at each stage can impact others.

Building a responsible AI ecosystem requires ongoing

efforts to refine each component and ensure they

work together effectively.

Here are some key considerations for implementing

these components in unison:

•	 Holistic optimization. Although each component

has a specific role and optimization goal,

components are not isolated entities. Over-

optimization of one component without

considering its interaction with others can lead

to suboptimal outcomes. For instance, over-

filtering training data for safety might make

later fine-tuning less effective, as the model

may not recognize and handle unsafe content

appropriately. This is why different layers of

safety mitigations throughout the development

lifecycle are critical for creating high-performing,

responsible products.

•	 Alignment of objectives at each stage of

development. To yield a product that is optimized

for your target use cases, it’s essential to have

a consistent set of goals and outcomes that

guide each stage of the process. From the

data-collection stage to user feedback, be sure

to keep your overall goal in mind.

•	 Standardizing processes for learning from

feedback/errors. Embracing an iterative model-

development mindset is crucial. Establish a well-

defined process for incorporating new learnings

into subsequent model training. This process

should include consistent feedback analysis,

prioritization of identified issues, and systematic

application of learnings in the next iteration of

model training.

The field of generative AI is complex, ever-evolving,

and full of potential, but it’s not without risks. The

key to unlocking its benefits while mitigating the

downsides is responsible AI practice. This practice

starts with understanding the complexities of the

technology, the potential impacts on users and

society, and the importance of continuously striving

for improvement.

By embracing the principles of transparency,

accountability and user empowerment, as well

as having a commitment to ongoing learning and

improvement, you can ensure that your AI feature

is not only innovative and useful but also responsible

and respectful. We hope this guide serves as a

valuable tool in your journey toward responsible

AI practice.

Combining the components
of responsible generative AI

21April 2024AI at Meta

Code Llama is a set of large language models for

code based on Llama 2 providing strong code

generation and infilling capabilities, support for

large input contexts, and zero-shot instruction

following ability for programming tasks, as well as

state-of-the-art base models for fine-tuning. We

provide multiple flavors to cover a wide range of

applications: foundation code models (Code Llama),

Python specializations (Code Llama - Python), and

instruction-following models (Code Llama - Instruct)

with 7B, 13B, 34B and 70B parameters each. All

models are trained on sequences of 16k tokens

and show improvements on inputs with up to 100k

tokens. The 7B and 13B Code Llama and Code

Llama - Instruct variants support infilling based on

surrounding content. Code Llama was developed

by training Llama 2 on publicly available code and

natural language datasets related to code.

Building AI models responsibly is important to

us, and we undertook a variety of safety measures

before releasing Code Llama, including many of

the measures used for Llama 2. Before releasing

the 7B, 13B, and 34B variants in August 2023, we

asked cybersecurity and malware development

experts to evaluate the Code Llama model’s capacity

for enabling malware development by otherwise

unskilled adversaries. We subsequently expanded

our evaluation suite to include Meta’s CyberSecEval,

which evaluates an LLM’s capacity for producing

Code Llama potential use cases

Code Llama has two broad use case categories:

1.	 Foundation model use case: Train on more data

to create variants of Code Llama, e.g, add other

programming languages (C++, Java), increase

context length, reduce latency by quantization

of model, etc.

Introducing Code Llama

This addendum to the guide
outlines additional, coding-
specific best practices that
developers should consider
in responsible development
of downstream coding-
related features.

ADDENDUM

code with known insecure patterns or complying

with a cyber attacker’s request. Measuring the

model’s response to malicious requests allowed

us to implement mitigations which make Code

Llama 70B safer than other available models, while

remaining helpful. For detailed information on model

training, architecture and parameters, evaluations,

responsible AI and safety refer to our research paper

and Responsible Use Guide.

22April 2024AI at Meta

https://arxiv.org/abs/2307.09288
https://ai.meta.com/research/publications/purple-llama-cyberseceval-a-benchmark-for-evaluating-the-cybersecurity-risks-of-large-language-models/
https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/

1

2.	 Instruction model use case: Add more instruction

data to improve the model’s ability to follow

instructions, extend capability to understand

non-English instructions, create standalone

code bots and integrate into existing 3rd party

products, etc.

Both the foundation and instruction Code Llama

models are not designed to be used as a large

language model for general purpose - for such

scenarios refer to Llama 2.

Foundation model use case

This model could be used for further research

exploration on specialized foundation large

language models for programming. When

fine-tuning Code Llama, we refer users to the

Responsible Use Guide for Llama 2, which provides

essential guidance on responsible development

of downstream models, including on (i) defining

content policies and mitigations; (ii) preparing

data; (iii) fine-tuning the model; (iv) evaluating and

improving performance; (v) addressing input- and

output-level risks; and (vi) building transparency

and reporting mechanisms in user interactions.

Additionally, developers should consider

code-specific best practices when building on top of

Code Llama in line with their specific use case.

Define content policies for use case

•	 A content policy defines what content is allowable

based on the intended use and deployment

context. This may also outline limitations on

producing potentially problematic content. In

the code domain, models should avoid producing

malware, virus, or malicious code. Developers

should consider how bad actors prompt the

model to produce these results.

•	 These policies will dictate the data needed,

annotation requirement, and goals of safety

fine-tuning. They may also be applied in input-

and output-level safeguards as additional

safety mechanisms.

Evaluations & benchmarks

•	 Models should be evaluated against their

intended use and end user requirements.

Specifically, code models should be evaluated

against code-specific benchmarks. As a resource,

you can find various benchmarks on Papers with

Code: Code Generation Benchmarks.

•	 We recommend evaluating the cybersecurity

safety of coding models with the CyberSecEval

(GitHub) which was released as part of our open

trust and safety tools and evaluations project.

•	 Non code-specific safety evaluations are also

recommended, for example, code models can be

evaluated on benchmarks such as TruthfulQA,

ToxiGen and BOLD.

ADDENDUM

23April 2024AI at Meta

https://paperswithcode.com/task/code-generation
https://paperswithcode.com/task/code-generation
https://github.com/facebookresearch/PurpleLlama/tree/main/CybersecurityBenchmarks
https://ai.meta.com/blog/purple-llama-open-trust-safety-generative-ai/
https://ai.meta.com/blog/purple-llama-open-trust-safety-generative-ai/

Red teaming & fine-tuning considerations

•	 The data should be representative of the

end users’ requirements. For example, if the

model is meant for Javascript generation,

the dataset chosen to fine-tune with should

be Javascript-focused. Developers should also

consider examining and placing restrictions

on any potentially malicious or nefarious code

in the data.

•	 Developers should ensure the security and

robustness qualities of the training code dataset

matches the security requirements of the output

and the systems where the output code will be

integrated based on a specific use case.

•	 Developers should perform safety studies on

code-specific areas such as intentional malware

generation and the unintentional introduction

of vulnerable code. Working with red-teaming

domain experts can help developers evaluate

the model’s capacity to lower the bar for writing

malicious code when the prompt intent is clear

and the output goes beyond resources already

publicly available on the Internet.

•	 Developers and end-users that use the model as

an assistant for software development should

be aware of the model’s overall language safety.

Performing safety studies and comparing results

to representative benchmarks can identify

particular categories of content risk. To mitigate

those risks, collect relevant fine-tuning data that

is not within the test set, and fine-tune the model

by controlling for higher measured safety while

maintaining helpfulness.

•	 If the model’s output will be used in production

systems, developers should ensure the code that

the model is trained on is free of relevant security

vulnerabilities. Developers and end-users that

use the model as an assistant for software

development should continue to follow security

best practices.

System-level safeguards

•	 As for other LLM use cases, we recommend

adding appropriate system-level safeguards in

addition to the model-level built-in alignment.

•	 As part of our open trust and safety tools, we

released Code Shield, an insecure code detector

that can be used at inference to prevent bad

coding practices. Visit Code Shield Github for

more information on how to integrate it into

your application.

When using Code Llama in particular, it is important

to keep in mind that Code Llama is specialized for

code-related tasks and may not be appropriate as a

foundation model for other task families, e.g, general

language model. We note that for downstream tasks

where the Python programming language is more

relevant, it may be more appropriate to use our Code

Llama - Python model variant. Code Llama and Code

Llama - Python are not trained with instruction

data hence are not designed to follow instruction in

natural language. Any use of these models to perform

general natural language tasks is not recommended

to avoid potential misuse of the models.

ADDENDUM

24April 2024AI at Meta

2Instruction model use case

This model could be used for further applied

research and testing of specialized large language

models for programming. Code Llama - Instruct

has the ability to understand instructions in

natural language. When using Code Llama for code

generation tasks, we recommend developers use

our Code Llama - Instruct variants, which have

been fine-tuned to generate helpful and safe

answers to users. Consult the full Responsible

Use Guide for best practices with regards to

generally addressing input- and output-level

risks and building transparency and reporting

mechanisms in user interactions, as relevant to

a specific use case.

For both use cases, users must abide by our

Acceptable Use Policy.

Reporting resources for developers

If you have any information about issues,

violations, or problems, please help keep our

communities safe by using our reporting resources.

•	 Reporting issues with the model via our

GitHub repo

•	 Reporting risky content generated by the

model via our Developer portal

•	 Reporting bugs and security concerns via our

Bug Bounty

ADDENDUM

25April 2024AI at Meta

https://github.com/facebookresearch/llama/blob/main/USE_POLICY.md
http://github.com/facebookresearch/codellama
http://github.com/facebookresearch/codellama
http://developers.facebook.com/llama_output_feedback
http://developers.facebook.com/llama_output_feedback
http://facebook.com/whitehat/info
http://facebook.com/whitehat/info

	 Step 2: Train the model 11

