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ABSTRACT

In the past five years, the use of generative and foundational AI systems has
greatly improved the decoding of brain activity. Visual perception, in particular,
can now be decoded from functional Magnetic Resonance Imaging (fMRI) with
remarkable fidelity. This neuroimaging technique, however, suffers from a lim-
ited temporal resolution (≈0.5 Hz) and thus fundamentally constrains its real-time
usage. Here, we propose an alternative approach based on magnetoencephalog-
raphy (MEG), a neuroimaging device capable of measuring brain activity with
high temporal resolution (≈5,000 Hz). For this, we develop an MEG decoding
model trained with both contrastive and regression objectives and consisting of
three modules: i) pretrained embeddings obtained from the image, ii) an MEG
module trained end-to-end and iii) a pretrained image generator. Our results are
threefold: Firstly, our MEG decoder shows a 7X improvement of image-retrieval
over classic linear decoders. Second, late brain responses to images are best de-
coded with DINOv2, a recent foundational image model. Third, image retrievals
and generations both suggest that MEG signals primarily contain high-level visual
features, whereas the same approach applied to 7T fMRI also recovers low-level
features. Overall, these results provide an important step towards the decoding
– in real time – of the visual processes continuously unfolding within the human
brain.

1 INTRODUCTION

Automating the discovery of brain representations. Understanding how the human brain rep-
resents the world is arguably one of the most profound scientific challenges. This quest, which
originally consisted of searching, one by one, for the specific features that trigger each neuron, (e.g.
Hubel & Wiesel (1962); O’Keefe & Nadel (1979); Kanwisher et al. (1997)), is now being automated
by Machine Learning (ML) in two mains ways. First, as a signal processing tool, ML algorithms are
trained to extract informative patterns of brain activity in a data-driven manner. For example, Kami-
tani & Tong (2005) trained a support vector machine to classify the orientations of visual gratings
from functional Magnetic Resonance Imaging (fMRI). Since then, deep learning has been increas-
ingly used to discover such brain activity patterns (Roy et al., 2019; Thomas et al., 2022; Jayaram
& Barachant, 2018; Défossez et al., 2022; Scotti et al., 2023). Second, ML algorithms are used as
functional models of the brain. For example, Yamins et al. (2014) have shown that the embedding
of natural images in pretrained deep nets linearly account for the neuronal responses to these images
in the cortex. Since, pretrained deep learning models have been shown to account for a wide variety
of stimuli including text, speech, navigation, and motor movement (Banino et al., 2018; Schrimpf
et al., 2020; Hausmann et al., 2021; Mehrer et al., 2021; Caucheteux et al., 2023).

Generating images from brain activity. This observed representational alignment between brain
activity and deep learning models creates a new opportunity: Decoding of visual stimuli need not
be restricted to a limited set of classes, but can now leverage pretrained representations to condi-
tion subsequent generative AI models. While the resulting image may be partly “hallucinated”,
interpreting images can be much simpler than interpreting latent features. Following a long series
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of generative approaches (Nishimoto et al., 2011; Kamitani & Tong, 2005; VanRullen & Reddy,
2019; Seeliger et al., 2018), diffusion techniques have, in this regard, significantly improved the
generation of images from functional Magnetic Resonance Imaging (fMRI). The resulting pipeline
typically consists of three main modules: (1) a set of pretrained embeddings obtained from the im-
age onto which (2) fMRI activity can be linearly mapped and (3) ultimately used to condition a
pretrained image-generation model (Ozcelik & VanRullen, 2023; Mai & Zhang, 2023; Zeng et al.,
2023; Ferrante et al., 2022). These recent fMRI studies primarily differ in the type of pretrained
image-generation model that they use.

The challenge of real-time decoding. This generative decoding approach has been mainly applied
to fMRI. However, the temporal resolution of fMRI is limited by the time scale of blood flow and
typically leads to one snapshot of brain activity every two seconds – a time scale that challenges its
clinical usage, e.g. for patients who require a brain-computer-interface (Willett et al., 2023; Moses
et al., 2021; Metzger et al., 2023; Défossez et al., 2022). On the contrary, magnetoencephalography
(MEG) can measure brain activity at a much higher temporal resolution (≈5,000 Hz) by recording
the fluctuation of magnetic fields elicited by the post-synaptic potentials of pyramidal neurons. This
higher temporal resolution comes at cost, however: the spatial resolution of MEG is limited to ≈300
sensors, whereas fMRI measures ≈100,000 voxels. In sum, fMRI intrinsically limits our ability to
(1) track the dynamics of neuronal activity, (2) decode dynamic stimuli (speech, videos etc) and
(3) apply these tools to real-time use cases. Conversely, it is unknown whether temporally-resolved
neuroimaging systems like MEG are sufficiently precise to generate natural images in real-time.

Our approach. Combining previous work on speech retrieval from MEG (Défossez et al., 2022)
and on image generation from fMRI (Takagi & Nishimoto, 2023; Ozcelik & VanRullen, 2023),
we here develop a three-module pipeline trained to (1) align MEG activity onto pretrained visual
embeddings and (2) generate images from a stream of MEG signals (Fig. 1).

Figure 1: (A) Approach. Locks indicate pretrained models. (B) Processing schemes. Unlike image
generation, image retrieval can be done in the aligned latent space, but requires the true image in the
retrieval set.

Our systematic benchmark provides two main contributions: our MEG decoder leads to (1) high-
performing image retrieval and image generation, (2) new means to interpret the unfolding of visual
processing in the brain. This demonstrates the capacity of our approach to truly generalize to new
visual concepts, paving the way to “free-form” visual decoding. Overall, our findings outline a
promising avenue for real-time decoding of visual representations in the lab and in the clinic.
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2 METHODS

2.1 PROBLEM STATEMENT

We aim to decode images from multivariate time series of brain activity recorded with MEG as
healthy participants watched a sequence of natural images. Let Xi ∈ RC×T be the MEG time
window collected as an image Ii was presented to the participant, where C is the number of MEG
channels, T is the number of time points in the MEG window and i ∈ [[1, N ]]. Let zi ∈ RF be the
latent representation of Ii, with F the number of features, obtained by embedding the image using
a pretrained image model (Section 2.4). As described in more detail below, our decoding approach
relies on training a brain module fθ : RC×T → RF to maximally retrieve or predict Ii through zi,
given Xi.

2.2 TRAINING OBJECTIVES

We use different training objectives for the different parts of our proposed pipeline. First, in the case
of retrieval, we aim to pick the right image Ii (i.e., the one corresponding to Xi) out of a bank of
candidate images. To do so, we train fθ using the CLIP loss (Radford et al., 2021) on batches of size
B with exactly one positive example:

LCLIP (θ) = − 1

B

B∑
i=1

(
log

exp(s(ẑi, zi)/τ)∑B
j=1 exp(s(ẑi, zj)/τ)

+ log
exp(s(ẑi, zi)/τ)∑B

k=1 exp(s(ẑk, zi)/τ)

)
(1)

where s is the cosine similarity, zi and ẑi = fθ(Xi) are the latent representation and the correspond-
ing MEG-based prediction, respectively, and τ is a learned temperature parameter.

Next, to go beyond retrieval and instead generate images, we train fθ to directly predict the latent
representations z such that we can use them to condition generative image models. This is done
using a standard mean squared error (MSE) loss:

LMSE(θ) =
1

NF

N∑
i=1

∥zi − ẑi∥22 (2)

Finally, we combine the CLIP and MSE losses using a convex combination with tuned weight to
train models that benefit from both training objectives:

LCombined = λLCLIP + (1− λ)LMSE (3)

2.3 BRAIN MODULE

We adapt the dilated residual ConvNet architecture of Défossez et al. (2022), denoted as fθ, to
learn the projection from an MEG window Xi ∈ RC×T to a latent image representation zi ∈ RF .
The original model’s output Ŷbackbone ∈ RF ′×T maintains the temporal dimension of the network
through its residual blocks. However, here we regress a single latent per input instead of a sequence
of T latents like in Défossez et al. (2022). Consequently, we add a temporal aggregation layer
to reduce the temporal dimension of Ŷbackbone to obtain ŷagg ∈ RF ′

. We experiment with three
types of aggregations: global average pooling, a learned affine projection, and an attention layer.
Finally, we add two MLP heads1, i.e., one for each term in LCombined, to project from F ′ to the F
dimensions of the target latent.

We run a hyperparameter search to identify an appropriate configuration of preprocessing, brain
module architecture, optimizer and loss hyperparameters for the retrieval task (see Appendix A.2).
The final architecture configuration for retrieval is described in Table S2 and contains e.g. 6.4M
trainable parameters for F = 768.

1A head consists of repeated LayerNorm-GELU-Linear blocks.
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For image generation experiments, the output of the MSE head is further postprocessed as in Ozcelik
& VanRullen (2023), i.e., we z-score normalize each feature across predictions, and then apply the
inverse z-score transform fitted on the training set (defined by the mean and standard deviation of
each feature dimension on the target embeddings). We select λ in LCombined by sweeping over
{0.0, 0.25, 0.5, 0.75, 1.0} and pick the model whose top-5 accuracy is the highest on the large test
set. Of note, when training models to generate CLIP and AutoKL latents, we simplify the task of
the CLIP head by reducing the dimensionality of its target: we use the CLS token for CLIP-Vision
(FMSE = 768), the ”mean” token for CLIP-Text (FMSE = 768), and the channel-average for
AutoKL latents (FMSE = 4096), respectively.

2.4 IMAGE MODULES

We study the functional alignment between brain activity and a variety of (output) embeddings
obtained from deep neural networks trained in three different representation learning paradigms,
spanning a wide range of dimensionalities: supervised learning (e.g. VGG-19), image-text align-
ment (CLIP), and variational autoencoders. When using vision transformers, we further include two
additional embeddings of smaller dimensionality: the average of all output embeddings across to-
kens (mean), and the output embedding of the class-token (CLS). For comparison, we also evaluate
our approach on human-engineered features obtained without deep learning. The list of embeddings
is provided in Appendix A.4. For clarity, we focus our experiments on a representative subset.

2.5 GENERATION MODULE

To fairly compare our work to the results obtained with fMRI results, we follow the approach of
Ozcelik & VanRullen (2023) and use a model trained to generate images from pretrained embed-
dings. Specifically, we use a latent diffusion model conditioned on three embeddings: CLIP-Vision
(257 tokens × 768), CLIP-Text (77 tokens × 768), and a variational autoencoder latent (AutoKL;
(4× 64× 64). Following Ozcelik & VanRullen (2023), we apply diffusion with 50 DDIM steps, a
guidance of 7.5, a strength of 0.75 with respect to the image-to-image pipeline, and a mixing of 0.4.

2.6 TRAINING AND COMPUTATIONAL CONSIDERATIONS

Cross-participant models are trained on a set of ≈ 63, 000 examples using the Adam optimizer
(Kingma & Ba, 2014) with learning rate of 3× 10−4 and a batch size of 128. We use early stopping
on a validation set of ≈ 15, 800 examples randomly sampled from the original training set, with a
patience of 10, and evaluate the performance of the model on a held-out test set (see below). Models
are trained on a single Volta GPU with 32 GB of memory. We train each model three times using
three different random seeds for the weight initialization of the brain module.

2.7 EVALUATION

Retrieval metrics. We first evaluate decoding performance using retrieval metrics. For a known
test set, we are interested in the probability of identifying the correct image given the model predic-
tions. Retrieval metrics have the advantage of sharing the same scale regardless of the dimensional-
ity of the MEG (like encoding metrics), the dimensionality of the image embedding (like regression
metrics). We evaluate retrieval using either the relative median rank (which does not depend on the
size of the retrieval set), defined as the rank of a prediction divided by the size of the retrieval set, or
the top-5 accuracy (which is more common in the literature).

Generation metrics. Decoding performance is often measured qualitatively as well as quantita-
tively using a variety of metrics reflecting the reconstruction fidelity both in terms of perception and
semantics. For fair comparison with fMRI generations, we provide the same metrics as Ozcelik &
VanRullen (2023), computed between seen and generated images: PixCorr (the pixel-wise correla-
tion between the true and generated images), SSIM (Structural Similarity Index Metric), and SwAV
(the correlation with respect to SwAV-ResNet50 output). On the other hand, AlexNet(2/5), Incep-
tion, and CLIP are the respective 2-way comparison scores of layers 2/5 of AlexNet, the pooled last
layer of Inception and the output layer of CLIP. For the NSD dataset, these metrics are reported for
participant 1 only (see Appendix A.5).
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To avoid non-representative cherry-picking, we sort all generations on the test set according to the
sum of (minus) SwAV and SSIM. We then split the data into 15 blocks and pick 4 images from the
best, middle and worst blocks with respect to the summed metric.

Real-time and average metrics. It is common in fMRI to decode brain activity from preprocessed
values estimated with a General Linear Model. These “beta values” are estimates of brain responses
to individual images, computed across multiple repetitions of such images. To provide a fair as-
sessment of possible MEG decoding performance, we thus leverage repeated image presentations
available in the datasets (see below) by averaging predictions before evaluating metrics.

2.8 DATASET

We test our approach on the “THINGS-MEG” dataset (Hebart et al., 2023). Four participants (2
females, 2 males; mean age of 23.25 years), underwent 12 MEG sessions during which they were
presented with a set of 22,448 unique images selected from the THINGS database (Hebart et al.,
2019), covering 1,854 categories. Of those, only a subset of 200 images (each one of a different cat-
egory) was shown multiple times to the participants. The images were displayed for 500 ms each,
with a variable fixation period of 1000 ± 200 ms between presentations. The THINGS dataset ad-
ditionally contains 3,659 images that were not shown to the participants and that we use to augment
the size of our retrieval set and emphasize the robustness of our method.

MEG Preprocessing. We use a minimal MEG data-preprocessing pipeline as in Défossez et al.
(2022). Raw data from the 272 MEG radial gradiometer channels is downsampled from 1,200 Hz to
120 Hz before being centered and clipped channel-wise above +/- 5 standard errors. The continuous
MEG data is then epoched from -500 ms to 1,000 ms relative to stimulus onset. Finally, baseline-
correction is performed by subtracting the mean signal value observed between the start of an epoch
and the stimulus onset for each channel.

Splits. The original split of Hebart et al. (2023) consists of 22,248 uniquely presented images,
and 200 test images repeated 12 times each for each participant (i.e., 2,400 trials per participant).
The use of this data split presents a challenge, however, as the test set contains only one image
per category, and these categories are also seen in the training set. This means evaluating retrieval
performance on this test set does not measure the capacity of the model to (1) extrapolate to new
unseen categories of images and (2) recover a particular image within a set of multiple images of
the same category, but rather only to “categorize” it. Consequently, we propose two modifications
of the original split. First, we remove from the training set any image whose category appears in the
original test set. This “adapted training set” removes any categorical leakage across the train/test
split and makes it possible to assess the capacity of the model to decode images of unseen image
categories (i.e., a “zero-shot” setting). Second, we propose a new “large test set” that is built using
the images removed from the training set. This new test set effectively allows evaluating retrieval
performance of images within images of the same category2. We report results on both the original
(“small”) and the “large” test sets to enable comparisons with the original settings of Ozcelik &
VanRullen (2023). Finally, we also compare our results to the performance obtained by a similar
pipeline but trained on fMRI data using the NSD dataset (Allen et al., 2022) (see Appendix A.5).

3 RESULTS

ML as an effective model of the brain. Which representations of natural images are likely to
maximize decoding performance? To answer this question, we compare the retrieval performance
obtained by linear Ridge regression models trained to predict one of 16 different latent visual rep-
resentations given the flattened MEG response Xi to each image Ii (Table S1). While all image
embeddings lead to above-chance retrieval, supervised and text/image alignment models (e.g. VGG,
CLIP) yield the highest retrieval scores.

2We leave out images of the original test set from this new large test set, as keeping them would create a
discrepancy between the number of MEG repetitions for training images and test images.
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ML as an effective tool to learn brain responses. We then compare these linear baselines to
a deep ConvNet architecture (Défossez et al., 2022) trained on the same task3, i.e., to retrieve the
matching image given an MEG window. Using a deep model leads to a 7X improvement over the lin-
ear baselines (Fig. 2). Multiple types of image embeddings lead to good retrieval performance, with
VGG-19 (supervised learning), CLIP-Vision (text/image alignment) and DINOv2 (self-supervised
learning) yielding top-5 accuracies of 70.33± 2.80%, 68.66± 2.84%, 68.00± 2.86%, respectively
(where the standard error of the mean is computed across the averaged image-wise metrics). Similar
conclusions, although with lower performance, can be drawn from our “large” test set setting, where
decoding cannot rely solely on the image category but also requires discriminating between multiple
images of the same category. Representative retrieval examples are shown in Appendix A.3.

Figure 2: Image retrieval performance obtained from a trained deep ConvNet. The original “small”
test set (Hebart et al., 2023) comprises 200 distinct images, each belonging to a different category.
In contrast, our proposed “large” test set comprises 12 images from each of those 200 categories,
yielding a total of 2,400 images. Chance-level is 2.5% top-5 accuracy for the small test set and
0.21% for the large test set. The best latent representations yield accuracies around 70% and 13%
for the small and large test sets, respectively.

Temporally-resolved image retrieval. The above results are obtained from the full time window
(-500 ms to 1,000 ms relative to stimulus onset). To further investigate the possibility of decoding
visual representations as they unfold in the brain, we repeat this analysis on 250 ms-long sliding win-
dows (Fig. 3). For clarity, we focus on a subset of representative image embeddings. As expected,
all models yield chance-level performance before the image presentation. For all models, a first
clear peak can then be observed on the 0 to 250-ms window, followed by a second peak, after the
image offset, which then quickly goes back to chance-level. Interestingly, the recent self-supervised
model DINOv2 yields particularly good retrieval performance after the image offset.

To get a better sense of what the above decoding metrics mean, we present the top-1 retrieved images
from an augmented retrieval set built by concatenating the “large” test set with an additional set of
3,659 images that were not seen by the participants (Fig. 4).

Overall, the retrieved images tend to come from the correct category, such as “speaker” or “brocoli”,
mostly during the first few sub-windows (t ≤ 1 s). However, these retrieved images do not appear
to share obvious low-level features to the images seen by the participants.

3We use λ = 1 in LCombined as we are solely concerned with the retrieval part of the pipeline here.
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Figure 3: Retrieval performance of models trained on 250 ms sliding windows for different image
embeddings. The shaded gray area indicates the 0.5-s interval during which the image was presented
to the participants. Accuracy generally peaked right after the image onset and offset.

Figure 4: Representative examples of dynamic retrievals using CLIP-Vision (CLS) and models
trained on 250-ms sliding windows (Image onset: t = 0, retrieval set: N = 6, 059 from 1, 196
categories). The groups of three stacked rows represent best, average and worst retrievals, obtained
by sampling examples from the <10%, 45-55% and >90% percentile groups based on top-5 accu-
racy.

Overall, and while further analyses of these results remain necessary, it seems that (1) our decoding
leverages the brain responses related to both the onset and the offset of the image and (2) category-
level information dominates these visual representations as early as 250 ms.
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Table 1: Quantitative evaluation of reconstruction quality from MEG data on THINGS-MEG (com-
pared to fMRI data on NSD (Allen et al., 2022) using a cross-validated Ridge regression). We re-
port PixCorr, SSIM, AlexNet(2), AlexNet(5), Inception, SwAV and CLIP (the side-arrow indicates
whether better scores are higher or lower). In particular, this shows that fMRI betas as provided in
NSD are significantly easier to decode than MEG signals from THINGS-MEG.

Low-level High-level

Dataset PixCorr ↑ SSIM ↑ AlexNet(2) ↑ AlexNet(5) ↑ Inception ↑ CLIP ↑ SwAV ↓
NSD (fMRI) 0.305 0.366 0.962 0.977 0.910 0.917 0.410
THINGS-MEG
(per-trial average) 0.079 0.329 0.718 0.823 0.674 0.765 0.595

THINGS-MEG
(per-subject average) 0.088 0.333 0.747 0.855 0.712 0.804 0.576

THINGS-MEG
(no average) 0.069 0.308 0.668 0.733 0.613 0.668 0.636

Generating images from MEG. While framing decoding as a retrieval task yields promising
results, it requires the true image to be in the retrieval set – a well-posed problem which presents
limited use-cases in practice. To address this issue, we trained three distinct brain modules to predict
the three embeddings that we use (see Section 2.5) to generate images (Fig. 5). As confirmed by the
evaluation metrics of Table 1, the generated images look relatively good, with multiple generated
images sharing the correct ground-truth category. However, they appear to contain limited low-level
information about the true image.

Figure 5: Examples of generated images conditioned on MEG-based latent predictions. The groups
of three stacked rows represent best, average and worst generations, as evaluated by the sum of
(minus) SwAV and SSIM.

The application of a very similar pipeline on an analogous fMRI dataset (Allen et al., 2022; Ozcelik
& VanRullen, 2023) – using a simple Ridge regression – shows image reconstructions that share
both high-level and low-level features with the true image Fig. S3). Together, these results suggest
that it is not the reconstruction pipeline which fails to reconstruct low-level features, but rather the
MEG signals which contain little information at that level.
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4 DISCUSSION

Related work. The present study shares several elements with previous MEG and electroen-
cephalography (EEG) studies designed not to maximize decoding performance but to understand
the cascade of visual processes in the brain. In particular, previous studies have trained linear mod-
els to either (1) classify a small set of images from brain activity (Grootswagers et al., 2019; King
& Wyart, 2021), (2) predict brain activity from the latent representations of the images (Cichy et al.,
2017) or (3) quantify the similarity between these two modalities with representational similarity
analysis (RSA) (Cichy et al., 2017; Bankson et al., 2018; Grootswagers et al., 2019; Gifford et al.,
2022). While these studies also make use of image embeddings, their linear decoders are limited to
classifying a small set of object classes, or to distinguishing pairs of images.

In addition, several deep neural networks have been introduced to maximize the classification of
speech (Défossez et al., 2022), mental load (Jiao et al., 2018) and images (Palazzo et al., 2020;
McCartney et al., 2022; Bagchi & Bathula, 2022) from EEG recordings. In particular, Palazzo et al.
(2020) introduced a deep convolutional neural network to classify natural images from EEG signals.
However, the experimental protocol consisted of presenting all of the images of the same class within
a single continuous block, which risks allowing the decoder to rely on autocorrelated noise, rather
than informative brain activity patterns (Li et al., 2020). In any case, these EEG studies focus on the
categorization of a relatively small number of images classes.

In sum, there is, to our knowledge, no MEG decoding study that learns end-to-end to reliably gen-
erate an open set of images.

Impact. The present work has both fundamental and practical impacts. First, the ability to decode
complex perceptual representations as a function of time promises to greatly facilitate our under-
standing of the processes at stake during visual processing in the brain. There is considerable work
inspecting the nature and the timing of the representations built along the visual system. However,
these results can be challenging to interpret, especially for high-level features. Generative decoding,
on the contrary, provides concrete and, thus, interpretable predictions. Second, the most obvious
use-case of brain decoding technology is to assist patients whose brain lesions challenge communi-
cation. This use-case, however, requires real-time decoding, and thus limit the use of neuroimaging
modalities with low temporal resolution such as fMRI. The present effort thus paves the way to
achieve this long-awaited goal.

Limitations. Our analyses highlight three main limitations to the decoding of images from MEG
signals. First, the decoding of high-level semantic features prevails over low-level features: in
particular, the generated images preserve semantics (e.g. object categories) much better than low-
level features (e.g. contours, shading). This phenomenon is difficult to attribute to our pipeline:
indeed, applying a similar procedure to 7T fMRI recordings achieves reasonably high reconstruction
of low-level features (Fig. S3). Rather, this result resonates with the fact that the spatial resolution
of MEG (≈ cm) is much lower than 7T fMRI’s (≈mm). Second, the present approach directly
depends on the pretraining of several models, and only learns end-to-end to align the MEG signals
to these pretrained embeddings. Our results show that this approach leads to better performance than
classical computer vision features such as color histograms, fast-Fourier transforms and histogram
of oriented gradients (HOG). This is consistent with a recent MEG study by Défossez et al. (2022)
which showed, in the context of speech decoding, that pretrained embeddings outperformed a fully
end-to-end approach. Nevertheless, it remains to be tested whether (1) fine-tuning the image and
generation modules and (2) combining the different types of visual features could improve decoding
performance.

Ethical implications. While the decoding of brain activity promises to help a variety of brain-
lesioned patients (Metzger et al., 2023; Moses et al., 2021; Défossez et al., 2022; Liu et al., 2023;
Willett et al., 2023), the rapid advances of this technology raise several ethical considerations, and
most notably, the necessity to preserve mental privacy. Several empirical findings are relevant to this
issue. Firstly, the decoding performance obtained with non-invasive recordings is only high for per-
ceptual tasks. By contrast, decoding accuracy considerably diminishes when individuals are tasked
to imagine representations (Horikawa & Kamitani, 2017; Tang et al., 2023). Second, decoding per-
formance seems to be severely compromised when participants are engaged in disruptive tasks, such
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as counting backward (Tang et al., 2023). In other words, the subjects’ consent is not only a legal but
also and primarily a technical requirement for brain decoding. To delve into these issues effectively,
we endorse the open and peer-reviewed research standards.

Conclusion. Overall, these results provide an important step towards the decoding of the visual
processes continuously unfolding in the human brain.
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A APPENDIX

A.1 LINEAR RIDGE REGRESSION SCORES ON PRETRAINED IMAGE REPRESENTATIONS

We provide a (5-fold cross-validated) Ridge regression baseline (Table S1) for comparison with our
brain module results of Section 3, showing considerable improvements for the latter.

Table S1: Image retrieval performance of a linear Ridge regression baseline on pretrained image
representations

Top-5 acc (%) ↑ Median relative rank ↓
Latent kind Latent name Small set Large set Small set Large set

Text/Image
alignment

CLIP-Vision (CLS) 10.5 0.50 0.23 0.34
CLIP-Text (mean) 6.0 0.25 0.42 0.43
CLIP-Vision (mean) 5.5 0.46 0.32 0.37

Feature
engineering

Color histogram 7.0 0.33 0.31 0.40
Local binary patterns (LBP) 3.5 0.37 0.34 0.44
FFT 2D (as real) 4.5 0.46 0.40 0.45
HOG 3.0 0.42 0.45 0.46
FFT 2D (log-PSD and angle) 2.0 0.37 0.47 0.46

Variational
autoencoder

AutoKL 7.5 0.54 0.24 0.38
VDVAE 8.0 0.50 0.33 0.43

Self-supervised
learning DINOv2 (CLS) 7.5 0.46 0.25 0.35

Supervised

VGG-19 12.5 1.04 0.18 0.33
ResNet-101 4.0 0.37 0.36 0.42
DenseNet-201 5.0 0.29 0.39 0.45
Wide ResNet-101-2 3.5 0.42 0.40 0.46
MobileNet v3 3.5 0.42 0.40 0.42

A.2 HYPERPARAMETER SEARCH

We run a hyperparameter search to find an appropriate configuration (MEG preprocessing, opti-
mizer, brain module architecture and loss definition) for the MEG-to-image retrieval task (λ = 0).
We randomly split the 79,392 (MEG, image) pairs of the adapted training set (Section 2.8) into
60%-20%-20% train, valid and test splits such that all presentations of a given image are contained
in the same split. We use the validation split to perform early stopping and the test split to evaluate
the performance of a configuration.

For the purpose of this search we pick CLIP-Vision (CLS) latent as a representative latent, since
it achieved good retrieval performance in preliminary experiments. We run the search six times
using two different random seed initializations for the brain module and three different random
train/valid/test splits. Fig. S1 summarizes the results of this hyperparameter search.

Based on this search, we use the following configuration: MEG window (tmin, tmax) of
[−0.5, 1.0] s, learning rate of 3 × 10−4, batch size of 128, brain module with two convolutional
blocks and both the spatial attention and subject layers of Défossez et al. (2022), affine projection
temporal aggregation layer with a single block in the CLIP projection head, and full CLIP loss (in-
cluding learned temperature parameter, normalization along both axes and symmetric terms). The
final architecture configuration is presented in Table S2.

A.3 FULL-WINDOW MEG-BASED IMAGE RETRIEVALS

Fig. S2 shows examples of retrieved images based on the best performing latents identified in Sec-
tion 3.
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Figure S1: Hyperparameter search results for the MEG-to-image retrieval task, presenting the impact
of (A) optimizer learning rate and batch size, (B) number of convolutional blocks and use of spatial
attention and/or subject-specific layers in the brain module, (C) MEG window parameters, (D) type
of temporal aggregation layer and number of blocks in the CLIP projection head of the brain module,
and (E) CLIP loss configuration (normalization axes, use of learned temperature parameter and use
of symmetric terms). Chance-level performance top-5 accuracy is 0.05%.

Table S2: Brain module configuration adapted from Défossez et al. (2022) for use with a target latent
of size 768 (e.g. CLIP-Vision (CLS), see Section 2.4) in retrieval settings.

Layer Input shape Output shape # parameters
Spatial attention block (272, 181) (270, 181) 552,960
Linear projection (270, 181) (270, 181) 73,170
Subject-specific linear layer (270, 181) (270, 181) 291,600
Residual dilated conv block 1 (270, 181) (320, 181) 1,183,360
Residual dilated conv block 2 (320, 181) (320, 181) 1,231,360
Linear projection (320, 181) (2048, 181) 1,518,208
Temporal aggregation (2048, 181) (2048, 1) 182
MLP projector (2048, 1) (768, 1) 1,573,632

Total 6,424,472
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Figure S2: Representative examples of retrievals (top-4) using models trained on full windows (from
-0.5 s to 1 s after image onset). Retrieval set: N = 6, 059 images from 1, 196 categories.

A.4 IMAGE EMBEDDINGS

We evaluate the performance of linear baselines and of a deep convolutional neural network on the
MEG-to-image retrieval task using a set of classic visual embeddings. We grouped these embeddings
by their corresponding paradigm:

Supervised learning. DenseNet-121,DenseNet-169,DenseNet-201, MobileNet v2, MobileNet
v3, ResNet-101, ResNet-18, ResNet-50, ResNext101-32-8d, ResNext50-32-4d, VGG-16,VGG-19,
Wide ResNet-101-2, Wide ResNet-50-2.

Text/Image alignment. CLIP-Vision, CLIP-Text, and their CLS and MEAN pooling.

Self-supervised learning. DINOv1, DINOv2 and their CLS and MEAN pooling.
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Figure S3: Examples of generated images conditioned on fMRI-based latent predictions. The groups
of three stacked rows represent best, average and worst retrievals, as evaluated by the sum of (minus)
SwAV and SSIM.

Variational autoencoders. The activations of the 31 first layers of the very deep variational-
autoencoder (VDVAE), and the Kullback-Leibler variational-autoencoder (AutoKL) used in the gen-
erative module (Section 2.5).

Engineered features. The color histogram of the seen image (8 bins per channels); the local binary
patterns (LBP) using the implementation in OpenCV 2 (Bradski, 2000) with ’uniform’ method,
P = 8 and R = 1; the Histogram of Oriented Gradients (HOG) using the implementation of sk-
image (Van der Walt et al., 2014) with 8 orientations, 8 pixels-per-cell and 2 cells-per-block.

A.5 7T FMRI DATASET

The Natural Scenes Dataset (NSD) (Allen et al., 2022) contains fMRI data from 8 participants
viewing a total of 73,000 RGB images. It has been successfully used for reconstructing seen images
from fMRI in several studies (Takagi & Nishimoto, 2023; Ozcelik & VanRullen, 2023; Scotti et al.,
2023). In particular, these studies use a highly preprocessed, compact version of fMRI data (“betas”)
obtained through generalized linear models fitted across multiple repetitions of the same image.

Each participant saw a total of 10,000 unique images (repeated 3 times each) across 37 sessions.
Each session consisted in 12 runs of 5 minutes each, where each image was seen during 3 s, with
a 1-s blank interval between two successive image presentations. Among the 8 participants, only 4
(namely 1, 2, 5 and 7) completed all sessions.

To compute the three latents used to reconstruct the seen images from fMRI data (as described in
Section 2.5) we follow Ozcelik & VanRullen (2023) and train and evaluate three distinct Ridge
regression models using the exact same split. That is, for each of the four remaining participants,
the 9,000 uniquely-seen-per-participant images (and their three repetitions) are used for training,
and a common set of 1000 images seen by all participant is kept for evaluation (also with their three
repetitions). We report reconstructions and metrics for participant 1.

The α coefficient for the L2-regularization of the regressions are cross-validated with a 5-fold
scheme on the training set of each subject. We follow the same standardization scheme for inputs
and predictions as in (Ozcelik & VanRullen, 2023).

Fig. S3 presents generated images obtained using the NSD dataset (Allen et al., 2022).
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