An open source deep learning framework built to be flexible and modular for research, with the stability and support needed for production deployment. It enables fast, flexible experimentation through a tape-based autograd system designed for immediate and python-like execution.
OverviewFrameworks
TorchScript
Provides ease-of-use and flexibility in eager mode, while seamlessly transitioning to graph mode for speed, optimization, and functionality in C++ runtime environments
Mobile (Experimental)
Extends the PyTorch API to cover common preprocessing and integration tasks needed for incorporating ML in mobile applications
Multimodal framework (MMF)
Our open source, modular deep learning framework for vision and language multimodal research
Hydra
An open source framework that simplifies the development of complex applications. Its dynamic approach to configuration will accelerate the development of complex Python applications.
GTN
An open source framework for automatic differentiation with a powerful, expressive type of graph called weighted finite-state transducers (WFSTs).
Tools
KILT Benchmarking
A resource for training, evaluating and analyzing NLP models on Knowledge Intensive Language Tasks.
Glow
A ML compiler that accelerates the performance of deep learning frameworks on different hardware platforms.
Large-scale forecasting
SSL framework for hyperparameter tuning that uses time series features as inputs and accurately produces optimal hyperparameters in 6-20x less time
COVID-19 Forecasting
Helping researchers, public health experts, and organizations better understand the spread of COVID-19
Foundational models
Latest news
Foundational models