July 09, 2020
We propose a direct-to-word sequence model which uses a word network to learn word embeddings from letters. The word network can be integrated seamlessly with arbitrary sequence models including Connectionist Temporal Classification and encoder-decoder models with attention. We show our direct-to-word model can achieve word error rate gains over sub-word level models for speech recognition. We also show that our direct-to-word approach retains the ability to predict words not seen at training time without any retraining. Finally, we demonstrate that a word-level model can use a larger stride than a sub-word level model while maintaining accuracy. This makes the model more efficient both for training and inference.
Publisher
ICML
Research Topics
April 17, 2025
Ansong Ni, Ruta Desai, Yang Li, Xinjie Lei, Dong Wang, Ramya Raghavendra, Gargi Ghosh, Daniel Li (FAIR), Asli Celikyilmaz
April 17, 2025
April 17, 2025
Paul McVay, Sergio Arnaud, Ada Martin, Arjun Majumdar, Krishna Murthy Jatavallabhula, Phillip Thomas, Ruslan Partsey, Daniel Dugas, Abha Gejji, Alexander Sax, Vincent-Pierre Berges, Mikael Henaff, Ayush Jain, Ang Cao, Ishita Prasad, Mrinal Kalakrishnan, Mike Rabbat, Nicolas Ballas, Mido Assran, Oleksandr Maksymets, Aravind Rajeswaran, Franziska Meier
April 17, 2025
April 14, 2025
Yeongmin Kim, Sotiris Anagnostidis, Yuming Du, Edgar Schoenfeld, Jonas Kohler, Markos Georgopoulos, Albert Pumarola, Ali Thabet, Artsiom Sanakoyeu
April 14, 2025
April 04, 2025
Olga Golovneva, Tianlu Wang, Jason Weston, Sainbayar Sukhbaatar
April 04, 2025
Foundational models
Our approach
Latest news
Foundational models