June 13, 2020
We present a novel method for inserting objects, specifically humans, into existing images, such that they blend in a photorealistic manner, while respecting the semantic context of the scene. Our method involves three subnetworks: the first generates the semantic map of the new person, given the pose of the other persons in the scene and an optional bounding box specification. The second network renders the pixels of the novel person and its blending mask, based on specifications in the form of multiple appearance components. A third network refines the generated face in order to match those of the target person. Our experiments present convincing high-resolution outputs in this novel and challenging application domain. In addition, the three networks are evaluated individually, demonstrating for example, state of the art results in pose transfer benchmarks.
November 11, 2024
Sherry Xue, Romy Luo, Changan Chen, Kristen Grauman
November 11, 2024
October 31, 2024
Mike Lambeta, Tingfan Wu, Ali Sengül, Victoria Rose Most, Nolan Black, Kevin Sawyer, Romeo Mercado, Haozhi Qi, Alexander Sohn, Byron Taylor, Norb Tydingco, Gregg Kammerer, Dave Stroud, Jake Khatha, Kurt Jenkins, Kyle Most, Neal Stein, Ricardo Chavira, Thomas Craven-Bartle, Eric Sanchez, Yitian Ding, Jitendra Malik, Roberto Calandra
October 31, 2024
October 16, 2024
Movie Gen Team
October 16, 2024
September 10, 2024
Uriel Singer, Amit Zohar, Yuval Kirstain, Shelly Sheynin, Adam Polyak, Devi Parikh, Yaniv Taigman
September 10, 2024
Foundational models
Latest news
Foundational models