NLP

What they do when in doubt: a study of inductive biases in seq2seq learners

May 2, 2021

Abstract

Sequence-to-sequence (seq2seq) learners are widely used, but we still have only limited knowledge about what inductive biases shape the way they generalize. We address that by investigating how popular seq2seq learners generalize in tasks that have high ambiguity in the training data. We use four new tasks to study learners' preferences for memorization, arithmetic, hierarchical, and compositional reasoning. Further, we connect to Solomonoff's theory of induction and propose to use description length as a principled and sensitive measure of inductive biases. In our experimental study, we find that LSTM-based learners can learn to perform counting, addition, and multiplication by a constant from a single training example. Furthermore, Transformer and LSTM-based learners show a bias toward the hierarchical induction over the linear one, while CNN-based learners prefer the opposite. The latter also show a bias toward a compositional generalization over memorization. Finally, across all our experiments, description length proved to be a sensitive measure of inductive biases.

Download the Paper

AUTHORS

Written by

Eugene Kharitonov

Rahma Chaabouni

Publisher

ICLR 2021

Related Publications

February 06, 2025

NLP

Brain-to-Text Decoding: A Non-invasive Approach via Typing

Jarod Levy, Mingfang (Lucy) Zhang, Svetlana Pinet, Jérémy Rapin, Hubert Jacob Banville, Stéphane d'Ascoli, Jean Remi King

February 06, 2025

February 06, 2025

NLP

From Thought to Action: How a Hierarchy of Neural Dynamics Supports Language Production

Mingfang (Lucy) Zhang, Jarod Levy, Stéphane d'Ascoli, Jérémy Rapin, F.-Xavier Alario, Pierre Bourdillon, Svetlana Pinet, Jean Remi King

February 06, 2025

November 16, 2022

NLP

Memorization Without Overfitting: Analyzing the Training Dynamics of Large Language Models

Kushal Tirumala, Aram H. Markosyan, Armen Aghajanyan, Luke Zettlemoyer

November 16, 2022

October 31, 2022

NLP

Autoregressive Search Engines: Generating Substrings as Document Identifiers

Fabio Petroni, Giuseppe Ottaviano, Michele Bevilacqua, Patrick Lewis, Scott Yih, Sebastian Riedel

October 31, 2022

November 01, 2018

NLP

Computer Vision

Non-Adversarial Unsupervised Word Translation | Facebook AI Research

Yedid Hoshen, Lior Wolf

November 01, 2018

December 02, 2018

NLP

Computer Vision

One-Shot Unsupervised Cross Domain Translation | Facebook AI Research

Sagie Benaim, Lior Wolf

December 02, 2018

June 30, 2019

NLP

Variational Training for Large-Scale Noisy-OR Bayesian Networks | Facebook AI Research

Geng Ji, Dehua Cheng, Huazhong Ning, Changhe Yuan, Hanning Zhou, Liang Xiong, Erik B. Sudderth

June 30, 2019

June 26, 2020

NLP

Computer Vision

ShadowSync: Performing Synchronization in the Background for Highly Scalable Distributed Training

Qinqing Zheng, Bor-Yiing Su, Jiyan Yang, Alisson Azzolini, Qiang Wu, Ou Jin, Shri Karandikar, Hagay Lupesko, Liang Xiong, Eric Zhou

June 26, 2020

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.