May 2, 2021
Sequence-to-sequence (seq2seq) learners are widely used, but we still have only limited knowledge about what inductive biases shape the way they generalize. We address that by investigating how popular seq2seq learners generalize in tasks that have high ambiguity in the training data. We use four new tasks to study learners' preferences for memorization, arithmetic, hierarchical, and compositional reasoning. Further, we connect to Solomonoff's theory of induction and propose to use description length as a principled and sensitive measure of inductive biases. In our experimental study, we find that LSTM-based learners can learn to perform counting, addition, and multiplication by a constant from a single training example. Furthermore, Transformer and LSTM-based learners show a bias toward the hierarchical induction over the linear one, while CNN-based learners prefer the opposite. The latter also show a bias toward a compositional generalization over memorization. Finally, across all our experiments, description length proved to be a sensitive measure of inductive biases.
Written by
Eugene Kharitonov
Rahma Chaabouni
Publisher
ICLR 2021
Research Topics
April 25, 2025
Rulin Shao, Qiao Rui, Varsha Kishore, Niklas Muennighoff, Victoria Lin, Daniela Rus, Bryan Kian Hsiang Low, Sewon Min, Scott Yih, Pang Wei Koh, Luke Zettlemoyer
April 25, 2025
April 17, 2025
Ansong Ni, Ruta Desai, Yang Li, Xinjie Lei, Dong Wang, Ramya Raghavendra, Gargi Ghosh, Daniel Li (FAIR), Asli Celikyilmaz
April 17, 2025
March 17, 2025
Zhaofeng Wu, Michihiro Yasunaga, Andrew Cohen, Yoon Kim, Asli Celikyilmaz, Marjan Ghazvininejad
March 17, 2025
February 06, 2025
Jarod Levy, Mingfang (Lucy) Zhang, Svetlana Pinet, Jérémy Rapin, Hubert Jacob Banville, Stéphane d'Ascoli, Jean Remi King
February 06, 2025
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
November 01, 2018
Yedid Hoshen, Lior Wolf
November 01, 2018
December 02, 2018
Sagie Benaim, Lior Wolf
December 02, 2018
June 30, 2019
Geng Ji, Dehua Cheng, Huazhong Ning, Changhe Yuan, Hanning Zhou, Liang Xiong, Erik B. Sudderth
June 30, 2019
Our approach
Latest news
Foundational models