August 22, 2013
Similarity search, or finding approximate nearest neighbors, is an important technique for many applications. Many recent research demonstrate that hashing methods can achieve promising results for large scale similarity search due to its computational and memory efficiency.
However, most existing hashing methods treat all hashing bits equally and the distance between data examples is calculated as the Hamming distance between their hashing codes, while different hashing bits may carry different amount of information.
This paper proposes a novel method, named Weighted Hashing (WeiHash), to assign different weights to different hashing bits. The hashing codes and their corresponding weights are jointly learned in a unified framework by simultaneously preserving the similarity between data examples and balancing the variance of each hashing bit.
An iterative coordinate descent optimization algorithm is designed to derive desired hashing codes and weights. Extensive experiments on two large scale datasets demonstrate the superior performance of the proposed research over several state-of-the-art hashing methods.
November 27, 2022
Nicolas Ballas, Bernhard Schölkopf, Chris Pal, Francesco Locatello, Li Erran, Martin Weiss, Nasim Rahaman, Yoshua Bengio
November 27, 2022
November 27, 2022
Andrea Tirinzoni, Aymen Al Marjani, Emilie Kaufmann
November 27, 2022
November 16, 2022
Kushal Tirumala, Aram H. Markosyan, Armen Aghajanyan, Luke Zettlemoyer
November 16, 2022
November 10, 2022
Unnat Jain, Abhinav Gupta, Himangi Mittal, Pedro Morgado
November 10, 2022
April 08, 2021
Caner Hazirbas, Joanna Bitton, Brian Dolhansky, Jacqueline Pan, Albert Gordo, Cristian Canton Ferrer
April 08, 2021
April 30, 2018
Tomer Galanti, Lior Wolf, Sagie Benaim
April 30, 2018
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
December 11, 2019
Eliya Nachmani, Lior Wolf
December 11, 2019
Foundational models
Latest news
Foundational models