RESEARCH

SPEECH & AUDIO

wav2vec: Unsupervised Pre-training for Speech Recognition

August 29, 2019

Abstract

We explore unsupervised pre-training for speech recognition by learning representations of raw audio. wav2vec is trained on large amounts of unlabeled audio data and the resulting representations are then used to improve acoustic model training. We pre-train a simple multi-layer convolutional neural network optimized via a noise contrastive binary classification task. Our experiments on WSJ reduce WER of a strong character-based log-mel filterbank baseline by up to 36% when only a few hours of transcribed data is available. Our approach achieves 2.43% WER on the nov92 test set. This outperforms Deep Speech 2, the best reported character-based system in the literature while using three orders of magnitude less labeled training data.

Download the Paper

AUTHORS

Written by

Michael Auli

Alexei Baevski

Ronan Collobert

Steffen Schneider

Publisher

Interspeech

Related Publications

October 16, 2024

SPEECH & AUDIO

COMPUTER VISION

Movie Gen: A Cast of Media Foundation Models

Movie Gen Team

October 16, 2024

October 04, 2024

HUMAN & MACHINE INTELLIGENCE

CONVERSATIONAL AI

Beyond Turn-Based Interfaces: Synchronous LLMs as Full-Duplex Dialogue Agents

Bandhav Veluri, Benjamin Peloquin, Bokai Yu, Hongyu Gong, Shyam Gollakota

October 04, 2024

September 26, 2024

SPEECH & AUDIO

NLP

Unveiling the Role of Pretraining in Direct Speech Translation

Belen Alastruey, Gerard I. Gállego, Marta R. Costa-jussa

September 26, 2024

August 23, 2024

SPEECH & AUDIO

Tango 2: Aligning Diffusion-based Text-to-Audio Generations through Direct Preference Optimization

Navonil Majumder, Chia-Yu Hung, Deepanway Ghosal, Wei-Ning Hsu, Rada Mihalcea, Soujanya Poria

August 23, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.