RESEARCH

NLP

Visual Curiosity: Learning to Ask Questions to Learn Visual Recognition

October 29, 2018

Abstract

In an open-world setting, it is inevitable that an intelligent agent (e.g., a robot) will encounter visual objects, attributes or relationships it does not recognize. In this work, we develop an agent empowered with visual curiosity, i.e. the ability to ask questions to an Oracle (e.g., human) about the contents in images (e.g., What is the object on the left side of the red cube?) and build visual recognition model based on the answers received (e.g., Cylinder). In order to do this, the agent must (1) understand what it recognizes and what it does not, (2) formulate a valid, unambiguous and informative language query (a question) to ask the Oracle, (3) derive the parameters of visual classifiers from the Oracle response and (4) leverage the updated visual classifiers to ask more clarified questions. Specifically, we propose a novel framework and formulate the learning of visual curiosity as a reinforcement learning problem. In this framework, all components of our agent, visual recognition module (to see), question generation policy (to ask), answer digestion module (to understand) and graph memory module (to memorize), are learned entirely end-to-end to maximize the reward derived from the scene graph obtained by the agent as a consequence of the dialog with the Oracle. Importantly, the question generation policy is disentangled from the visual recognition system and specifics of the environment. Consequently, we demonstrate a sort of double generalization. Our question generation policy generalizes to new environments and a new pair of eyes, i.e., new visual system. Trained on a synthetic dataset, our results show that our agent learns new visual concepts significantly faster than several heuristic baselines, even when tested on synthetic environments with novel objects, as well as in a realistic environment.

Download the Paper

AUTHORS

Written by

Dhruv Batra

Devi Parikh

Jianwei Yang

Jiasen Lu

Stefan Lee

Publisher

CoRL

Related Publications

November 20, 2024

NLP

CORE MACHINE LEARNING

Llama Guard 3-1B-INT4: Compact and Efficient Safeguard for Human-AI Conversations

Igor Fedorov, Kate Plawiak, Lemeng Wu, Tarek Elgamal, Naveen Suda, Eric Smith, Hongyuan Zhan, Jianfeng Chi, Yuriy Hulovatyy, Kimish Patel, Zechun Liu, Yangyang Shi, Tijmen Blankevoort, Mahesh Pasupuleti, Bilge Soran, Zacharie Delpierre Coudert, Rachad Alao, Raghuraman Krishnamoorthi, Vikas Chandra

November 20, 2024

November 19, 2024

NLP

Adaptive Decoding via Latent Preference Optimization

Shehzaad Dhuliawala, Ilia Kulikov, Ping Yu, Asli Celikyilmaz, Jason Weston, Sainbayar Sukhbaatar, Jack Lanchantin

November 19, 2024

November 14, 2024

NLP

CORE MACHINE LEARNING

A Survey on Deep Learning for Theorem Proving

Zhaoyu Li, Jialiang Sun, Logan Murphy, Qidong Su, Zenan Li, Xian Zhang, Kaiyu Yang, Xujie Si

November 14, 2024

October 04, 2024

HUMAN & MACHINE INTELLIGENCE

CONVERSATIONAL AI

Beyond Turn-Based Interfaces: Synchronous LLMs as Full-Duplex Dialogue Agents

Bandhav Veluri, Benjamin Peloquin, Bokai Yu, Hongyu Gong, Shyam Gollakota

October 04, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.