June 14, 2024
Artificial intelligence (AI) has seen a tremendous surge in capabilities thanks to the use of foundation models trained on internet-scale data. On the flip side, the uncurated nature of internet-scale data also poses significant privacy and legal risks, as they often contain personal information or copyrighted material that should not be trained on without permission. In this work, we propose as a mitigation measure a recipe to train foundation vision models via self-supervised learning with differential privacy (DP) guarantee. We identify masked autoencoders as a suitable learning algorithm that aligns well with DP-SGD, and train ViP---a Vision transformer with differential Privacy---under a strict privacy budget of epsilon=8 on the LAION400M dataset. We evaluate the quality of representation learned by ViP using standard downstream vision tasks; in particular, ViP achieves a (non-private) linear probing accuracy of 55.7% on ImageNet, comparable to that of end-to-end trained AlexNet (trained and evaluated on ImageNet). Our result suggests that scaling to internet-scale data can be practical for private learning. Code and DP pre-trained models are available at https://github.com/facebookresearch/ViP-MAE.
Publisher
ICML
Research Topics
Core Machine Learning
December 18, 2024
Haider Al-Tahan, Quentin Garrido, Randall Balestriero, Diane Bouchacourt, Caner Hazirbas, Mark Ibrahim
December 18, 2024
December 12, 2024
December 12, 2024
December 12, 2024
Mubashara Akhtar, Omar Benjelloun, Costanza Conforti, Luca Foschini, Pieter Gijsbers, Joan Giner-Miguelez, Sujata Goswami, Nitisha Jain, Michalis Karamousadakis, Satyapriya Krishna, Michael Kuchnik, Sylvain Lesage, Quentin Lhoest, Pierre Marcenac, Manil Maskey, Peter Mattson, Luis Oala, Hamidah Oderinwale, Pierre Ruyssen, Tim Santos, Rajat Shinde, Elena Simperl, Arjun Suresh, Goeffry Thomas, Slava Tykhonov, Joaquin Vanschoren, Susheel Varma, Jos van der Velde, Steffen Vogler, Carole-Jean Wu, Luyao Zhang
December 12, 2024
December 10, 2024
Yaron Lipman, Marton Havasi, Peter Holderrieth, Neta Shaul, Matt Le, Brian Karrer, Ricky Chen, David Lopez-Paz, Heli Ben Hamu, Itai Gat
December 10, 2024
Foundational models
Latest news
Foundational models