COMPUTER VISION

Very high resolution canopy height maps from RGB imagery using self-supervised vision transformer and convolutional decoder trained on Aerial Lidar

April 23, 2024

Abstract

Vegetation structure mapping is critical for understanding the global carbon cycle and monitoring nature-based approaches to climate adaptation and mitigation. Repeated measurements of these data allow for the observation of deforestation or degradation of existing forests, natural forest regeneration, and the implementation of sustainable agricultural practices like agroforestry. Assessments of tree canopy height and crown projected area at a high spatial resolution are also important for monitoring carbon fluxes and assessing tree-based land uses, since forest structures can be highly spatially heterogeneous, especially in agroforestry systems. Very high resolution satellite imagery (less than one meter (1 m) Ground Sample Distance) makes it possible to extract information at the tree level while allowing monitoring at a very large scale. This paper presents the first high-resolution canopy height map concurrently produced for multiple sub-national jurisdictions. Specifically, we produce very high resolution canopy height maps for the states of California and São Paulo, a significant improvement in resolution over the ten meter (10 m) resolution of previous Sentinel / GEDI based worldwide maps of canopy height. The maps are generated by the extraction of features from a self-supervised model trained on Maxar imagery from 2017 to 2020, and the training of a dense prediction decoder against aerial lidar maps. We also introduce a post-processing step using a convolutional network trained on GEDI observations. We evaluate the proposed maps with set-aside validation lidar data as well as by comparing with other remotely sensed maps and field-collected data, and find our model produces an average Mean Absolute Error (MAE) of 2.8 m and Mean Error (ME) of 0.6 m.

Download the Paper

AUTHORS

Written by

Jamie Tolan

Eric Yang

Ben Nosarzewski

Guillaume Couairon

Huy V. Vo

John Brandt

Justine Spore

Sayantan Majumdar

Daniel Haziza

Janaki Vamaraju

Theo Moutakanni

Piotr Bojanowski

Tracy Johns

Brian White

Tobias Tiecke

Camille Couprie

Edward Saenz

Publisher

Remote Sensing of Environment

Research Topics

Computer Vision

Related Publications

September 05, 2024

CONVERSATIONAL AI

NLP

Transfusion: Predict the Next Token and Diffuse Images with One Multi-Modal Model

Chunting Zhou, Lili Yu, Arun Babu, Kushal Tirumala, Michihiro Yasunaga, Leonid Shamis, Jacob Kahn, Luke Zettlemoyer, Omer Levy, Xuezhe Ma

September 05, 2024

August 20, 2024

CONVERSATIONAL AI

NLP

Lumos : Empowering Multimodal LLMs with Scene Text Recognition

Ashish Shenoy, Yichao Lu, Srihari Jayakumar, Debojeet Chatterjee, Mohsen Moslehpour, Pierce Chuang, Abhay Harpale, Vikas Bhardwaj, Di Xu (SWE), Shicong Zhao, Ankit Ramchandani, Luna Dong, Anuj Kumar

August 20, 2024

August 15, 2024

INTEGRITY

COMPUTER VISION

Guarantees of confidentiality via Hammersley-Chapman-Robbins bounds

Kamalika Chaudhuri, Chuan Guo, Laurens van der Maaten, Saeed Mahloujifar, Mark Tygert

August 15, 2024

July 29, 2024

COMPUTER VISION

SAM 2: Segment Anything in Images and Videos

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chay Ryali, Tengyu Ma, Haitham Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Vasudev Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollar, Christoph Feichtenhofer

July 29, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.