December 8, 2013
For low resource languages, collecting sufficient training data to build acoustic and language models is time consuming and often expensive. But large amounts of text data, such as online newspapers, web forums or online encyclopedias, usually exist for languages that have a large population of native speakers. This text data can be easily collected from the web and then used to both expand the recognizer’s vocabulary and improve the language model. One challenge, however, is normalizing and filtering the web data for a specific task. In this paper, we investigate the use of online text resources to improve the performance of speech recognition specifically for the task of keyword spotting. For the five languages provided in the base period of the IARPA BABEL project, we automatically collected text data from the web using only LimitedLP resources. We then compared two methods for filtering the web data, one based on perplexity ranking and the other based on out-of-vocabulary (OOV) word detection. By integrating the web text into our systems, we observed significant improvements in keyword spotting accuracy for four out of the five languages. The best approach obtained an improvement in actual term weighted value (ATWV) of 0.0424 compared to a baseline system trained only on LimitedLP resources. On average, ATWV was improved by 0.0243 across five languages.
Research Topics
November 16, 2022
Kushal Tirumala, Aram H. Markosyan, Armen Aghajanyan, Luke Zettlemoyer
November 16, 2022
October 31, 2022
Fabio Petroni, Giuseppe Ottaviano, Michele Bevilacqua, Patrick Lewis, Scott Yih, Sebastian Riedel
October 31, 2022
December 06, 2020
Michael Lewis, Armen Aghajanyan, Gargi Ghosh, Luke Zettlemoyer, Marjan Ghazvininejad, Sida Wang
December 06, 2020
November 30, 2020
Dhruv Batra, Devi Parikh, Meera Hahn, Jacob Krantz, James Rehg, Peter Anderson, Stefan Lee
November 30, 2020
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
November 01, 2018
Yedid Hoshen, Lior Wolf
November 01, 2018
December 02, 2018
Sagie Benaim, Lior Wolf
December 02, 2018
June 30, 2019
Geng Ji, Dehua Cheng, Huazhong Ning, Changhe Yuan, Hanning Zhou, Liang Xiong, Erik B. Sudderth
June 30, 2019
Foundational models
Latest news
Foundational models