RESEARCH

SPEECH & AUDIO

Unsupervised Translation of Programming Languages

October 19, 2020

Abstract

A transcompiler, also known as source-to-source translator, is a system that converts source code from a high-level programming language (such as C++ or Python) to another. Transcompilers are primarily used for interoperability, and to port codebases written in an obsolete or deprecated language (e.g. COBOL, Python 2) to a modern one. They typically rely on handcrafted rewrite rules, applied to the source code abstract syntax tree. Unfortunately, the resulting translations often lack readability, fail to respect the target language conventions, and require manual modifications in order to work properly. The overall translation process is time-consuming and requires expertise in both the source and target languages, making code-translation projects expensive. Although neural models significantly outperform their rule-based counterparts in the context of natural language translation, their applications to transcompilation have been limited due to the scarcity of parallel data in this domain. In this paper, we propose to leverage recent approaches in unsupervised machine translation to train a fully unsupervised neural transcompiler. We train our model on source code from open source GitHub projects, and show that it can translate functions between C++, Java, and Python with high accuracy. Our method relies exclusively on monolingual source code, requires no expertise in the source or target languages, and can easily be generalized to other programming languages. We also build and release a test set composed of 852 parallel functions, along with unit tests to check the correctness of translations. We show that our model outperforms rule-based commercial baselines by a significant margin.

Download the Paper

AUTHORS

Written by

Baptiste Rozière

Marie-Anne Lachaux

Lowik Chanussot

Guillaume Lample

Publisher

NeurIPS

Related Publications

August 01, 2024

SPEECH & AUDIO

NLP

Toward Joint Language Modeling for Speech Units and Text

Ju-Chieh Chou, Wei-Ning Hsu, Karen Livescu, Arun Babu, Alexis Conneau, Alexei Baevski, Michael Auli

August 01, 2024

July 23, 2024

HUMAN & MACHINE INTELLIGENCE

CONVERSATIONAL AI

The Llama 3 Herd of Models

Llama team

July 23, 2024

June 25, 2024

SPEECH & AUDIO

NLP

Textless Acoustic Model with Self-Supervised Distillation for Noise-Robust Expressive Speech-to-Speech Translation

Min-Jae Hwang, Ilia Kulikov, Benjamin Peloquin, Hongyu Gong, Peng-Jen Chen, Ann Lee

June 25, 2024

June 05, 2024

SPEECH & AUDIO

Proactive Detection of Voice Cloning with Localized Watermarking

Robin San Romin, Pierre Fernandez, Hady Elsahar, Alexandre Deffosez, Teddy Furon, Tuan Tran

June 05, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.