RESEARCH

SPEECH & AUDIO

Unsupervised Translation of Programming Languages

October 19, 2020

Abstract

A transcompiler, also known as source-to-source translator, is a system that converts source code from a high-level programming language (such as C++ or Python) to another. Transcompilers are primarily used for interoperability, and to port codebases written in an obsolete or deprecated language (e.g. COBOL, Python 2) to a modern one. They typically rely on handcrafted rewrite rules, applied to the source code abstract syntax tree. Unfortunately, the resulting translations often lack readability, fail to respect the target language conventions, and require manual modifications in order to work properly. The overall translation process is time-consuming and requires expertise in both the source and target languages, making code-translation projects expensive. Although neural models significantly outperform their rule-based counterparts in the context of natural language translation, their applications to transcompilation have been limited due to the scarcity of parallel data in this domain. In this paper, we propose to leverage recent approaches in unsupervised machine translation to train a fully unsupervised neural transcompiler. We train our model on source code from open source GitHub projects, and show that it can translate functions between C++, Java, and Python with high accuracy. Our method relies exclusively on monolingual source code, requires no expertise in the source or target languages, and can easily be generalized to other programming languages. We also build and release a test set composed of 852 parallel functions, along with unit tests to check the correctness of translations. We show that our model outperforms rule-based commercial baselines by a significant margin.

Download the Paper

AUTHORS

Written by

Baptiste Rozière

Marie-Anne Lachaux

Lowik Chanussot

Guillaume Lample

Publisher

NeurIPS

Related Publications

April 17, 2025

HUMAN & MACHINE INTELLIGENCE

CONVERSATIONAL AI

Collaborative Reasoner: Self-improving Social Agents with Synthetic Conversations

Ansong Ni, Ruta Desai, Yang Li, Xinjie Lei, Dong Wang, Ramya Raghavendra, Gargi Ghosh, Daniel Li (FAIR), Asli Celikyilmaz

April 17, 2025

April 17, 2025

ROBOTICS

RESEARCH

Locate 3D: Real-World Object Localization via Self-Supervised Learning in 3D

Paul McVay, Sergio Arnaud, Ada Martin, Arjun Majumdar, Krishna Murthy Jatavallabhula, Phillip Thomas, Ruslan Partsey, Daniel Dugas, Abha Gejji, Alexander Sax, Vincent-Pierre Berges, Mikael Henaff, Ayush Jain, Ang Cao, Ishita Prasad, Mrinal Kalakrishnan, Mike Rabbat, Nicolas Ballas, Mido Assran, Oleksandr Maksymets, Aravind Rajeswaran, Franziska Meier

April 17, 2025

April 14, 2025

RESEARCH

GRAPHICS

Autoregressive Distillation of Diffusion Transformers

Yeongmin Kim, Sotiris Anagnostidis, Yuming Du, Edgar Schoenfeld, Jonas Kohler, Markos Georgopoulos, Albert Pumarola, Ali Thabet, Artsiom Sanakoyeu

April 14, 2025

March 25, 2025

INTEGRITY

SPEECH & AUDIO

Targeted Data Poisoning for Black-Box Audio Datasets Ownership Verification

Wassim (Wes) Bouaziz, El Mahdi El Mhamdi, Nicolas Usunier

March 25, 2025

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.