RESEARCH

SPEECH & AUDIO

Unsupervised Translation of Programming Languages

October 19, 2020

Abstract

A transcompiler, also known as source-to-source translator, is a system that converts source code from a high-level programming language (such as C++ or Python) to another. Transcompilers are primarily used for interoperability, and to port codebases written in an obsolete or deprecated language (e.g. COBOL, Python 2) to a modern one. They typically rely on handcrafted rewrite rules, applied to the source code abstract syntax tree. Unfortunately, the resulting translations often lack readability, fail to respect the target language conventions, and require manual modifications in order to work properly. The overall translation process is time-consuming and requires expertise in both the source and target languages, making code-translation projects expensive. Although neural models significantly outperform their rule-based counterparts in the context of natural language translation, their applications to transcompilation have been limited due to the scarcity of parallel data in this domain. In this paper, we propose to leverage recent approaches in unsupervised machine translation to train a fully unsupervised neural transcompiler. We train our model on source code from open source GitHub projects, and show that it can translate functions between C++, Java, and Python with high accuracy. Our method relies exclusively on monolingual source code, requires no expertise in the source or target languages, and can easily be generalized to other programming languages. We also build and release a test set composed of 852 parallel functions, along with unit tests to check the correctness of translations. We show that our model outperforms rule-based commercial baselines by a significant margin.

Download the Paper

AUTHORS

Written by

Baptiste Rozière

Marie-Anne Lachaux

Lowik Chanussot

Guillaume Lample

Publisher

NeurIPS

Related Publications

October 16, 2024

SPEECH & AUDIO

COMPUTER VISION

Movie Gen: A Cast of Media Foundation Models

Movie Gen Team

October 16, 2024

October 04, 2024

HUMAN & MACHINE INTELLIGENCE

CONVERSATIONAL AI

Beyond Turn-Based Interfaces: Synchronous LLMs as Full-Duplex Dialogue Agents

Bandhav Veluri, Benjamin Peloquin, Bokai Yu, Hongyu Gong, Shyam Gollakota

October 04, 2024

September 26, 2024

SPEECH & AUDIO

NLP

Unveiling the Role of Pretraining in Direct Speech Translation

Belen Alastruey, Gerard I. Gállego, Marta R. Costa-jussa

September 26, 2024

August 23, 2024

SPEECH & AUDIO

Tango 2: Aligning Diffusion-based Text-to-Audio Generations through Direct Preference Optimization

Navonil Majumder, Chia-Yu Hung, Deepanway Ghosal, Wei-Ning Hsu, Rada Mihalcea, Soujanya Poria

August 23, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.