December 07, 2019
Object segmentation is a crucial problem that is usually solved by using supervised learning approaches over very large datasets composed of both images and corresponding object masks. Since the masks have to be provided at pixel level, building such a dataset for any new domain can be very time-consuming. We present ReDO, a new model able to extract objects from images without any annotation in an unsupervised way. It relies on the idea that it should be possible to change the textures or colors of the objects without changing the overall distribution of the dataset. Following this assumption, our approach is based on an adversarial architecture where the generator is guided by an input sample: given an image, it extracts the object mask, then redraws a new object at the same location. The generator is controlled by a discriminator that ensures that the distribution of generated images is aligned to the original one. We experiment with this method on different datasets and demonstrate the good quality of extracted masks.
Written by
Ludovic Denoyer
Mickael Chen
Thierry Artieres
Publisher
NeurIPS
February 27, 2025
Pascal Kesseli, Peter O'Hearn, Ricardo Silveira Cabral
February 27, 2025
February 07, 2025
Andros Tjandra, Yi-Chiao Wu, Baishan Guo, John Hoffman, Brian Ellis, Apoorv Vyas, Bowen Shi, Sanyuan Chen, Matt Le, Nick Zacharov, Carleigh Wood, Ann Lee, Wei-Ning Hsu
February 07, 2025
February 06, 2025
Jarod Levy, Mingfang (Lucy) Zhang, Svetlana Pinet, Jérémy Rapin, Hubert Jacob Banville, Stéphane d'Ascoli, Jean Remi King
February 06, 2025
February 06, 2025
Mingfang (Lucy) Zhang, Jarod Levy, Stéphane d'Ascoli, Jérémy Rapin, F.-Xavier Alario, Pierre Bourdillon, Svetlana Pinet, Jean Remi King
February 06, 2025
Foundational models
Our approach
Latest news
Foundational models