RESEARCH

COMPUTER VISION

Unsupervised Learning of Visual Features by Contrasting Cluster Assignments

December 02, 2020

Abstract

Unsupervised image representations have significantly reduced the gap with supervised pretraining, notably with the recent achievements of contrastive learning methods. These contrastive methods typically work online and rely on a large number of explicit pairwise feature comparisons, which is computationally challenging.In this paper, we propose an online algorithm, SwAV, that takes advantage of contrastive methods without requiring to compute pairwise comparisons. Specifically,our method simultaneously clusters the data while enforcing consistency between cluster assignments produced for different augmentations (or “views”) of the same image, instead of comparing features directly as in contrastive learning. Simply put,we use a “swapped” prediction mechanism where we predict the code of a view from the representation of another view. Our method can be trained with large and small batches and can scale to unlimited amounts of data. Compared to previous contrastive methods, our method is more memory efficient since it does not require a large memory bank or a special momentum network. In addition, we also propose a new data augmentation strategy,multi-crop, that uses a mix of views with different resolutions in place of two full-resolution views, without increasing the memory or compute requirements. We validate our findings by achieving75.3%top-1 accuracy on ImageNet with ResNet-50, as well as surpassing supervised pretraining on all the considered transfer tasks.

Download the Paper

AUTHORS

Written by

Armand Joulin

Ishan Misra

Mathilde Caron

Piotr Bojanowski

Priya Goyal

Julien Mairal

Publisher

NeurIPS

Research Topics

Computer Vision

Related Publications

July 02, 2024

GRAPHICS

COMPUTER VISION

Meta 3D AssetGen: Text-to-Mesh Generation with High-Quality Geometry, Texture, and PBR Materials

Yawar Siddiqui, Tom Monnier, Filippos Kokkinos, Mahendra Kariya, Yanir Kleiman, Emilien Garreau, Oran Gafni, Natalia Neverova, Andrea Vedaldi, Roman Shapovalov, David Novotny

July 02, 2024

July 02, 2024

GRAPHICS

COMPUTER VISION

Meta 3D Gen

Raphael Bensadoun, Tom Monnier, Yanir Kleiman, Filippos Kokkinos, Yawar Siddiqui, Mahendra Kariya, Omri Harosh, Roman Shapovalov, Emilien Garreau, Animesh Karnewar, Ang Cao, Idan Azuri, Iurii Makarov, Eric-Tuan Le, Antoine Toisoul, David Novotny, Oran Gafni, Natalia Neverova, Andrea Vedaldi

July 02, 2024

July 02, 2024

GRAPHICS

COMPUTER VISION

Meta 3D TextureGen: Fast and Consistent Texture Generation for 3D Objects

Raphael Bensadoun, Yanir Kleiman, Idan Azuri, Omri Harosh, Andrea Vedaldi, Natalia Neverova, Oran Gafni

July 02, 2024

June 20, 2024

COMPUTER VISION

ICON: Incremental CONfidence for Joint Pose and Radiance Field Optimization

Weiyao Wang, Pierre Gleize, Hao Tang, Xingyu Chen, Kevin Liang, Matt Feiszli

June 20, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.