Research

Computer Vision

Unsupervised Correlation Analysis

June 17, 2018

Abstract

Linking between two data sources is a basic building block in numerous computer vision problems. In this paper, we set to answer a fundamental cognitive question: are prior correspondences necessary for linking between different domains?

One of the most popular methods for linking between domains is Canonical Correlation Analysis (CCA). All current CCA algorithms require correspondences between the views. We introduce a new method Unsupervised Correlation Analysis (UCA), which requires no prior correspondences between the two domains. The correlation maximization term in CCA is replaced by a combination of a reconstruction term (similar to autoencoders), full cycle loss, orthogonality and multiple domain confusion terms. Due to lack of supervision, the optimization leads to multiple alternative solutions with similar scores and we therefore introduce a consensus-based mechanism that is often able to recover the desired solution. Remarkably, this suffices in order to link remote domains such as text and images. We also present results on well accepted CCA benchmarks, showing that performance far exceeds other unsupervised baselines, and approaches supervised performance in some cases.

Download the Paper

AUTHORS

Written by

Yedid Hoshen

Lior Wolf

Research Topics

Computer Vision

Related Publications

November 10, 2022

Computer Vision

Learning State-Aware Visual Representations from Audible Interactions

Unnat Jain, Abhinav Gupta, Himangi Mittal, Pedro Morgado

November 10, 2022

November 06, 2022

Computer Vision

Neural Basis Models for Interpretability

Filip Radenovic, Abhimanyu Dubey, Dhruv Mahajan

November 06, 2022

October 25, 2022

Theseus: A Library for Differentiable Nonlinear Optimization

Mustafa Mukadam, Austin Wang, Brandon Amos, Daniel DeTone, Jing Dong, Joe Ortiz, Luis Pineda, Maurizio Monge, Ricky Chen, Shobha Venkataraman, Stuart Anderson, Taosha Fan, Paloma Sodhi

October 25, 2022

October 22, 2022

Computer Vision

Time-rEversed diffusioN tEnsor Transformer: A new TENET of Few-Shot Object Detection

Naila Murray, Lei Wang, Piotr Koniusz, Shan Zhang

October 22, 2022

April 30, 2018

Computer Vision

NAM – Unsupervised Cross-Domain Image Mapping without Cycles or GANs | Facebook AI Research

Yedid Hoshen, Lior Wolf

April 30, 2018

December 11, 2019

Speech & Audio

Computer Vision

Hyper-Graph-Network Decoders for Block Codes | Facebook AI Research

Eliya Nachmani, Lior Wolf

December 11, 2019

April 30, 2018

NLP

Speech & Audio

Identifying Analogies Across Domains | Facebook AI Research

Yedid Hoshen, Lior Wolf

April 30, 2018

November 01, 2018

NLP

Computer Vision

Non-Adversarial Unsupervised Word Translation | Facebook AI Research

Yedid Hoshen, Lior Wolf

November 01, 2018

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.