RESEARCH

COMPUTER VISION

Unreproducible Research is Reproducible

June 10, 2019

Abstract

The apparent contradiction in the title is a word- play on the different meanings attributed to the word reproducible across different scientific fields. What we imply is that unreproducible findings can be built upon reproducible methods. With- out denying the importance of facilitating the re- production of methods, we deem important to reassert that reproduction of findings is a funda- mental step of the scientific inquiry. We argue that the commendable quest towards easy deter- ministic reproducibility of methods and numerical results should not have us forget the even more im- portant necessity of ensuring the reproducibility of empirical findings and conclusions by properly accounting for essential sources of variations. We provide experiments to exemplify the brittleness of current common practice in the evaluation of models in the field of deep learning, showing that even if the results could be reproduced, a slightly different experiment would not support the find- ings. We hope to help clarify the distinction be- tween exploratory and empirical research in the field of deep learning and believe more energy should be devoted to proper empirical research in our community. This work is an attempt to promote the use of more rigorous and diversified methodologies. It is not an attempt to impose a new methodology and it is not a critique on the nature of exploratory research.

Download the Paper

AUTHORS

Written by

Pascal Vincent

César Laurent

Xavier Bouthillier

Publisher

ICML

Research Topics

Computer Vision

Related Publications

May 06, 2024

REINFORCEMENT LEARNING

COMPUTER VISION

Solving General Noisy Inverse Problem via Posterior Sampling: A Policy Gradient Viewpoint

Haoyue Tang, Tian Xie

May 06, 2024

April 23, 2024

COMPUTER VISION

Very high resolution canopy height maps from RGB imagery using self-supervised vision transformer and convolutional decoder trained on Aerial Lidar

Jamie Tolan, Eric Yang, Ben Nosarzewski, Guillaume Couairon, Huy Vo, John Brandt, Justine Spore, Sayantan Majumdar, Daniel Haziza, Janaki Vamaraju, Theo Moutakanni, Piotr Bojanowski, Tracy Johns, Brian White, Tobias Tiecke, Camille Couprie, Edward Saenz

April 23, 2024

April 23, 2024

CONVERSATIONAL AI

GRAPHICS

Generating Illustrated Instructions

Sachit Menon, Ishan Misra, Rohit Girdhar

April 23, 2024

April 18, 2024

COMPUTER VISION

Imagine Flash: Accelerating Emu Diffusion Models with Backward Distillation

Jonas Kohler, Albert Pumarola, Edgar Schoenfeld, Artsiom Sanakoyeu, Roshan Sumbaly, Peter Vajda, Ali Thabet

April 18, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.