June 10, 2019
The apparent contradiction in the title is a word- play on the different meanings attributed to the word reproducible across different scientific fields. What we imply is that unreproducible findings can be built upon reproducible methods. With- out denying the importance of facilitating the re- production of methods, we deem important to reassert that reproduction of findings is a funda- mental step of the scientific inquiry. We argue that the commendable quest towards easy deter- ministic reproducibility of methods and numerical results should not have us forget the even more im- portant necessity of ensuring the reproducibility of empirical findings and conclusions by properly accounting for essential sources of variations. We provide experiments to exemplify the brittleness of current common practice in the evaluation of models in the field of deep learning, showing that even if the results could be reproduced, a slightly different experiment would not support the find- ings. We hope to help clarify the distinction be- tween exploratory and empirical research in the field of deep learning and believe more energy should be devoted to proper empirical research in our community. This work is an attempt to promote the use of more rigorous and diversified methodologies. It is not an attempt to impose a new methodology and it is not a critique on the nature of exploratory research.
Publisher
ICML
Research Topics
December 12, 2024
Melissa Hall, Oscar Mañas, Reyhane Askari, Mark Ibrahim, Candace Ross, Pietro Astolfi, Tariq Berrada Ifriqi, Marton Havasi, Yohann Benchetrit, Karen Ullrich, Carolina Braga, Abhishek Charnalia, Maeve Ryan, Mike Rabbat, Michal Drozdzal, Jakob Verbeek, Adriana Romero Soriano
December 12, 2024
December 11, 2024
Pierre Fernandez, Hady Elsahar, Zeki Yalniz, Alexandre Mourachko
December 11, 2024
December 11, 2024
Hu Xu, Bernie Huang, Ellen Tan, Ching-Feng Yeh, Jacob Kahn, Christine Jou, Gargi Ghosh, Omer Levy, Luke Zettlemoyer, Scott Yih, Philippe Brunet, Kim Hazelwood, Ramya Raghavendra, Daniel Li (FAIR), Saining Xie, Christoph Feichtenhofer
December 11, 2024
December 11, 2024
Narine Kokhlikyan, Bargav Jayaraman, Florian Bordes, Chuan Guo, Kamalika Chaudhuri
December 11, 2024
Foundational models
Latest news
Foundational models