CORE MACHINE LEARNING

Understanding contrastive versus reconstructive self-supervised learning of Vision Transformers

November 08, 2022

Abstract

While self-supervised learning on Vision Transformers (ViTs) has led to state-of-the-art results on image classification benchmarks, there has been little research on understanding the differences in representations that arise from different training methods. We address this by utilizing Centered Kernel Alignment for comparing neural representations learned by contrastive learning and reconstructive learning, two leading paradigms for self-supervised learning. We find that the representations learned by reconstructive learning are significantly dissimilar from representations learned by contrastive learning. We analyze these differences, and find that they start to arise early in the network depth and are driven mostly by the attention and normalization layers in a transformer block. We also find that these representational differences translate to class predictions and linear separability of classes in the pretrained models. Finally, we analyze how fine-tuning affects these representational differences, and discover that a fine-tuned reconstructive model becomes more similar to a pre-trained contrastive model.

Download the Paper

AUTHORS

Written by

Ari Morcos

Florian Bordes

Pascal Vincent

Shashank Shekhar

Publisher

NeurIPS SSL Workshop

Research Topics

Core Machine Learning

Related Publications

August 12, 2024

CORE MACHINE LEARNING

Contrastive Predict-and-Search for Mixed Integer Linear Programs

Arman Zharmagambetov, Yuandong Tian, Aaron Ferber, Bistra Dilkina, Taoan Huang

August 12, 2024

August 09, 2024

CORE MACHINE LEARNING

Benchmarking Attacks on Learning with Errors

Emily Wenger, Eshika Saxena, Mohamed Malhou, Ellie Thieu, Kristin Lauter

August 09, 2024

August 02, 2024

CORE MACHINE LEARNING

GenCO: Generating Diverse Designs with Combinatorial Constraints

Arman Zharmagambetov, Yuandong Tian

August 02, 2024

July 29, 2024

COMPUTER VISION

CORE MACHINE LEARNING

Factorizing Text-to-Video Generation by Explicit Image Conditioning

Rohit Girdhar, Mannat Singh, Andrew Brown, Quentin Duval, Samaneh Azadi, Saketh Rambhatla, Mian Akbar Shah, Xi Yin, Devi Parikh, Ishan Misra

July 29, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.