Research

Uncertainty in Online Experiments with Dependent Data: An Evaluation of Bootstrap Methods

August 11, 2013

Abstract

Many online experiments exhibit dependence between users and items. For example, in online advertising, observations that have a user or an ad in common are likely to be associated. Because of this, even in experiments involving millions of subjects, the difference in mean outcomes between control and treatment conditions can have substantial variance. Previous theoretical and simulation results demonstrate that not accounting for this kind of dependence structure can result in confidence intervals that are too narrow, leading to inaccurate hypothesis tests.

We develop a framework for understanding how dependence affects uncertainty in user-item experiments and evaluate how bootstrap methods that account for differing levels of dependence perform in practice. We use three real datasets describing user behaviors on Facebook – user responses to ads, search results, and News Feed stories – to generate data for synthetic experiments in which there is no effect of the treatment on average by design. We then estimate empirical Type I error rates for each bootstrap method. Accounting for dependence within a single type of unit (i.e., within-user dependence) is often sufficient to get reasonable error rates. But when experiments have effects, as one might expect in the field, accounting for multiple units with a multiway bootstrap can be necessary to get close to the advertised Type I error rates. This work provides guidance to practitioners evaluating large-scale experiments, and highlights the importance of analysis of inferential methods for dependence structures common to online systems.

Download the Paper

Related Publications

November 27, 2022

Core Machine Learning

Neural Attentive Circuits

Nicolas Ballas, Bernhard Schölkopf, Chris Pal, Francesco Locatello, Li Erran, Martin Weiss, Nasim Rahaman, Yoshua Bengio

November 27, 2022

November 27, 2022

Near Instance-Optimal PAC Reinforcement Learning for Deterministic MDPs

Andrea Tirinzoni, Aymen Al Marjani, Emilie Kaufmann

November 27, 2022

November 16, 2022

NLP

Memorization Without Overfitting: Analyzing the Training Dynamics of Large Language Models

Kushal Tirumala, Aram H. Markosyan, Armen Aghajanyan, Luke Zettlemoyer

November 16, 2022

November 10, 2022

Computer Vision

Learning State-Aware Visual Representations from Audible Interactions

Unnat Jain, Abhinav Gupta, Himangi Mittal, Pedro Morgado

November 10, 2022

April 08, 2021

Responsible AI

Integrity

Towards measuring fairness in AI: the Casual Conversations dataset

Caner Hazirbas, Joanna Bitton, Brian Dolhansky, Jacqueline Pan, Albert Gordo, Cristian Canton Ferrer

April 08, 2021

April 30, 2018

The Role of Minimal Complexity Functions in Unsupervised Learning of Semantic Mappings | Facebook AI Research

Tomer Galanti, Lior Wolf, Sagie Benaim

April 30, 2018

April 30, 2018

Computer Vision

NAM – Unsupervised Cross-Domain Image Mapping without Cycles or GANs | Facebook AI Research

Yedid Hoshen, Lior Wolf

April 30, 2018

December 11, 2019

Speech & Audio

Computer Vision

Hyper-Graph-Network Decoders for Block Codes | Facebook AI Research

Eliya Nachmani, Lior Wolf

December 11, 2019

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.