August 11, 2013
Many online experiments exhibit dependence between users and items. For example, in online advertising, observations that have a user or an ad in common are likely to be associated. Because of this, even in experiments involving millions of subjects, the difference in mean outcomes between control and treatment conditions can have substantial variance. Previous theoretical and simulation results demonstrate that not accounting for this kind of dependence structure can result in confidence intervals that are too narrow, leading to inaccurate hypothesis tests.
We develop a framework for understanding how dependence affects uncertainty in user-item experiments and evaluate how bootstrap methods that account for differing levels of dependence perform in practice. We use three real datasets describing user behaviors on Facebook – user responses to ads, search results, and News Feed stories – to generate data for synthetic experiments in which there is no effect of the treatment on average by design. We then estimate empirical Type I error rates for each bootstrap method. Accounting for dependence within a single type of unit (i.e., within-user dependence) is often sufficient to get reasonable error rates. But when experiments have effects, as one might expect in the field, accounting for multiple units with a multiway bootstrap can be necessary to get close to the advertised Type I error rates. This work provides guidance to practitioners evaluating large-scale experiments, and highlights the importance of analysis of inferential methods for dependence structures common to online systems.
November 27, 2022
Nicolas Ballas, Bernhard Schölkopf, Chris Pal, Francesco Locatello, Li Erran, Martin Weiss, Nasim Rahaman, Yoshua Bengio
November 27, 2022
November 27, 2022
Andrea Tirinzoni, Aymen Al Marjani, Emilie Kaufmann
November 27, 2022
November 16, 2022
Kushal Tirumala, Aram H. Markosyan, Armen Aghajanyan, Luke Zettlemoyer
November 16, 2022
November 10, 2022
Unnat Jain, Abhinav Gupta, Himangi Mittal, Pedro Morgado
November 10, 2022
April 08, 2021
Caner Hazirbas, Joanna Bitton, Brian Dolhansky, Jacqueline Pan, Albert Gordo, Cristian Canton Ferrer
April 08, 2021
April 30, 2018
Tomer Galanti, Lior Wolf, Sagie Benaim
April 30, 2018
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
December 11, 2019
Eliya Nachmani, Lior Wolf
December 11, 2019
Foundational models
Latest news
Foundational models