October 28, 2021
We consider the problem of generating rankings that are fair towards both users and item producers in recommender systems. We address both usual recommendation (e.g., of music or movies) and reciprocal recommendation (e.g., dating). Following concepts of distributive justice in welfare economics, our notion of fairness aims at increasing the utility of the worse-off individuals, which we formalize using the criterion of Lorenz efficiency. It guarantees that rankings are Pareto efficient, and that they maximally redistribute utility from better-off to worse-off, at a given level of overall utility. We propose to generate rankings by maximizing concave welfare functions, and develop an efficient inference procedure based on the Frank-Wolfe algorithm. We prove that unlike existing approaches based on fairness constraints, our approach always produces fair rankings. Our experiments also show that it increases the utility of the worse-off at lower costs in terms of overall utility.
Publisher
NeurIPS
Research Topics
February 15, 2024
Danny Deng, Hongkuan Zhou, Hanqing Zeng, Yinglong Xia, Chris Leung (AI), Jianbo Li, Rajgopal Kannan, Viktor Prasanna
February 15, 2024
January 06, 2024
Geng Ji, Wentao Jiang, Jiang Li, Fahmid Morshed Fahid, Zhengxing Chen, Yinghua Li, Jun Xiao, Chongxi Bao, Zheqing (Bill) Zhu
January 06, 2024
September 12, 2023
Bill Zhu, Alex Nikulkov, Dmytro Korenkevych, Fan Liu, Jalaj Bhandari, Ruiyang Xu, Urun Dogan
September 12, 2023
September 12, 2023
Bill Zhu, Benjamin Van Roy
September 12, 2023
Foundational models
Latest news
Foundational models