RANKING AND RECOMMENDATIONS

Two-sided fairness in rankings via Lorenz dominance

October 28, 2021

Abstract

We consider the problem of generating rankings that are fair towards both users and item producers in recommender systems. We address both usual recommendation (e.g., of music or movies) and reciprocal recommendation (e.g., dating). Following concepts of distributive justice in welfare economics, our notion of fairness aims at increasing the utility of the worse-off individuals, which we formalize using the criterion of Lorenz efficiency. It guarantees that rankings are Pareto efficient, and that they maximally redistribute utility from better-off to worse-off, at a given level of overall utility. We propose to generate rankings by maximizing concave welfare functions, and develop an efficient inference procedure based on the Frank-Wolfe algorithm. We prove that unlike existing approaches based on fairness constraints, our approach always produces fair rankings. Our experiments also show that it increases the utility of the worse-off at lower costs in terms of overall utility.

Download the Paper

AUTHORS

Written by

Virginie Do

Sam Corbett-Davies

Jamal Atif

Nicolas Usunier

Publisher

NeurIPS

Related Publications

February 15, 2024

RANKING AND RECOMMENDATIONS

CORE MACHINE LEARNING

TASER: Temporal Adaptive Sampling for Fast and Accurate Dynamic Graph Representation Learning

Danny Deng, Hongkuan Zhou, Hanqing Zeng, Yinglong Xia, Chris Leung (AI), Jianbo Li, Rajgopal Kannan, Viktor Prasanna

February 15, 2024

January 06, 2024

RANKING AND RECOMMENDATIONS

REINFORCEMENT LEARNING

Learning to bid and rank together in recommendation systems

Geng Ji, Wentao Jiang, Jiang Li, Fahmid Morshed Fahid, Zhengxing Chen, Yinghua Li, Jun Xiao, Chongxi Bao, Zheqing (Bill) Zhu

January 06, 2024

September 12, 2023

RANKING AND RECOMMENDATIONS

REINFORCEMENT LEARNING

Optimizing Long-term Value for Auction-Based Recommender Systems via On-Policy Reinforcement Learning

Bill Zhu, Alex Nikulkov, Dmytro Korenkevych, Fan Liu, Jalaj Bhandari, Ruiyang Xu, Urun Dogan

September 12, 2023

September 12, 2023

RANKING AND RECOMMENDATIONS

REINFORCEMENT LEARNING

Scalable Neural Contextual Bandit for Recommender Systems

Bill Zhu, Benjamin Van Roy

September 12, 2023

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.