September 27, 2021
Much of the recent progress in sequential and session-based recommendation has been driven by improvements in model architecture and pretraining techniques originating in the field of Natural Language Processing. Transformer architectures in particular have facilitated building higher-capacity models and provided data augmentation and training techniques which demonstrably improve the effectiveness of sequential recommendation. But with a thousandfold more research going on in NLP, the application of transformers for recommendation understandably lags behind. To remedy this we introduce Transformers4Rec, an open-source library built upon HuggingFace's Transformers library with a similar goal of opening up the advances of NLP based Transformers to the recommender system community and making these advancements immediately accessible for the tasks of sequential and session-based recommendation. Like its core dependency, Transformers4Rec is designed to be extensible by researchers, simple for practitioners, and fast and robust in industrial deployments.
In order to demonstrate the usefulness of the library and the applicability of Transformer architectures in next-click prediction for user sessions, where sequence lengths are much shorter than those commonly found in NLP, we have leveraged Transformers4Rec to win two recent session-based recommendation competitions. In addition, we present in this paper the first comprehensive empirical analysis comparing many Transformer architectures and training approaches for the task of session-based recommendation. We demonstrate that the best Transformer architectures have superior performance across two e-commerce datasets while performing similarly to the baselines on two news datasets. We further evaluate in isolation the effectiveness of the different training techniques used in causal language modeling, masked language modeling, permutation language modeling and replacement token detection for a single Transformer architecture, XLNet. We establish that training XLNet with replacement token detection performs well across all datasets. Finally, we explore techniques to include side information such as item and user context features in order to establish best practices and show that the inclusion of side information uniformly improves recommendation performance.
Publisher
RecSys 2021
Research Topics
November 30, 2020
Nicolas Usunier, Clément Calauzènes
November 30, 2020
February 01, 2021
Adria Ruiz, Jakob Verbeek
February 01, 2021
November 01, 2018
Jason Gauci, Edoardo Conti, Yitao Liang, Kittipat Virochsiri, Yuchen He, Zachary Kaden, Vivek Narayanan, Xiaohui Ye
November 01, 2018
December 03, 2018
Jian Zhang, Jiyan Yang, Hector Yuen
December 03, 2018
May 03, 2019
Jinfeng Rao, Wei Yang, Yuhao Zhang, Ferhan Ture, Jimmy Lin
May 03, 2019
Foundational models
Latest news
Foundational models