October 31, 2018
Current dialogue systems fail at being engaging for users, especially when trained endto-end without relying on proactive reengaging scripted strategies. Zhang et al. (2018) showed that the engagement level of end-toend dialogue models increases when conditioning them on text personas providing some personalized back-story to the model. However, the dataset used in (Zhang et al., 2018) is synthetic and only contains around 1k different personas. In this paper we introduce a new dataset providing 5 million personas and 700 million persona-based dialogues. Our experiments show that, at this scale, training using personas still improves the performance of end-to-end systems. In addition, we show that other tasks benefit from the wide coverage of our dataset by fine-tuning our model on the data from (Zhang et al., 2018) and achieving state-of-the-art results.
Written by
Pierre-Emmanuel Mazaré
Antoine Bordes
Martin Raison
Samuel Humeau
Publisher
EMNLP
October 16, 2024
Movie Gen Team
October 16, 2024
October 04, 2024
Bandhav Veluri, Benjamin Peloquin, Bokai Yu, Hongyu Gong, Shyam Gollakota
October 04, 2024
September 26, 2024
Belen Alastruey, Gerard I. Gállego, Marta R. Costa-jussa
September 26, 2024
August 23, 2024
Navonil Majumder, Chia-Yu Hung, Deepanway Ghosal, Wei-Ning Hsu, Rada Mihalcea, Soujanya Poria
August 23, 2024
Foundational models
Latest news
Foundational models