May 24, 2019
Blind single-channel source separation is a long standing signal processing challenge. Many methods were proposed to solve this task utilizing multiple signal priors such as low rank, sparsity, temporal continuity etc. The recent advance of generative adversarial models presented new opportunities in signal regression tasks. The power of adversarial training however has not yet been realized for blind source separation tasks. In this work, we propose a novel method for blind source separation (BSS) using adversarial methods. We rely on the independence of sources for creating adversarial constraints on pairs of approximately separated sources, which ensure good separation. Experiments are carried out on image sources validating the good performance of our approach, and presenting our method as a promising approach for solving BSS for general signals.
April 17, 2025
Ansong Ni, Ruta Desai, Yang Li, Xinjie Lei, Dong Wang, Ramya Raghavendra, Gargi Ghosh, Daniel Li (FAIR), Asli Celikyilmaz
April 17, 2025
April 17, 2025
Paul McVay, Sergio Arnaud, Ada Martin, Arjun Majumdar, Krishna Murthy Jatavallabhula, Phillip Thomas, Ruslan Partsey, Daniel Dugas, Abha Gejji, Alexander Sax, Vincent-Pierre Berges, Mikael Henaff, Ayush Jain, Ang Cao, Ishita Prasad, Mrinal Kalakrishnan, Mike Rabbat, Nicolas Ballas, Mido Assran, Oleksandr Maksymets, Aravind Rajeswaran, Franziska Meier
April 17, 2025
April 14, 2025
Yeongmin Kim, Sotiris Anagnostidis, Yuming Du, Edgar Schoenfeld, Jonas Kohler, Markos Georgopoulos, Albert Pumarola, Ali Thabet, Artsiom Sanakoyeu
April 14, 2025
March 25, 2025
Wassim (Wes) Bouaziz, El Mahdi El Mhamdi, Nicolas Usunier
March 25, 2025
Foundational models
Our approach
Latest news
Foundational models