May 24, 2019
Blind single-channel source separation is a long standing signal processing challenge. Many methods were proposed to solve this task utilizing multiple signal priors such as low rank, sparsity, temporal continuity etc. The recent advance of generative adversarial models presented new opportunities in signal regression tasks. The power of adversarial training however has not yet been realized for blind source separation tasks. In this work, we propose a novel method for blind source separation (BSS) using adversarial methods. We rely on the independence of sources for creating adversarial constraints on pairs of approximately separated sources, which ensure good separation. Experiments are carried out on image sources validating the good performance of our approach, and presenting our method as a promising approach for solving BSS for general signals.
August 01, 2024
Ju-Chieh Chou, Wei-Ning Hsu, Karen Livescu, Arun Babu, Alexis Conneau, Alexei Baevski, Michael Auli
August 01, 2024
July 23, 2024
Llama team
July 23, 2024
June 25, 2024
Min-Jae Hwang, Ilia Kulikov, Benjamin Peloquin, Hongyu Gong, Peng-Jen Chen, Ann Lee
June 25, 2024
June 05, 2024
Robin San Romin, Pierre Fernandez, Hady Elsahar, Alexandre Deffosez, Teddy Furon, Tuan Tran
June 05, 2024
Foundational models
Latest news
Foundational models