COMPUTER VISION

Towards image compression with perfect realism at ultra-low bitrates

March 14, 2024

Abstract

Image codecs are typically optimized to trade-off bitrate vs. distortion metrics. At low bitrates, this leads to compression artefacts which are easily perceptible, even when training with perceptual or adversarial losses. To improve image quality and remove dependency on the bitrate we propose to decode with iterative diffusion models. We condition the decoding process on a vector-quantized image representation, as well as a global image description to provide additional context. We dub our model `PerCo'' for ``perceptual compression'', and compare it to state-of-the-art codecs at rates from 0.1 down to 0.003 bits per pixel. The latter rate is more than an order of magnitude smaller than those considered in most prior work, compressing a 512x768 Kodak image with less than 153 bytes. Despite this ultra-low bitrate, our approach maintains the ability to reconstruct realistic images. We find that our model leads to reconstructions with state-of-the-art visual quality as measured by FID and KID. As predicted by rate-distortion-perception theory, visual quality is less dependent on the bitrate than previous methods.

Download the Paper

AUTHORS

Written by

Marlene Careil

Matthew Muckley

Jakob Verbeek

Stephane Lathuiliere

Publisher

ICLR

Research Topics

Computer Vision

Related Publications

April 17, 2025

COMPUTER VISION

Perception Encoder: The best visual embeddings are not at the output of the network

Daniel Bolya, Po-Yao Huang, Peize Sun, Jang Hyun Cho, Andrea Madotto, Chen Wei, Tengyu Ma, Jiale Zhi, Jathushan Rajasegaran, Hanoona Rasheed, Junke Wang, Marco Monteiro, Hu Xu, Shiyu Dong, Nikhila Ravi, Daniel Li (FAIR), Piotr Dollar, Christoph Feichtenhofer

April 17, 2025

April 17, 2025

COMPUTER VISION

PerceptionLM: Open-Access Data and Models for Detailed Visual Understanding

Jang Hyun Cho, Andrea Madotto, Effrosyni Mavroudi, Triantafyllos Afouras, Tushar Nagarajan, Muhammad Maaz, Yale Song, Tengyu Ma, Shuming Hu, Hanoona Rasheed, Peize Sun, Po-Yao Huang, Daniel Bolya, Suyog Jain, Miguel Martin, Huiyu Wang, Nikhila Ravi, Shashank Jain, Tammy Stark, Shane Moon, Babak Damavandi, Vivian Lee, Andrew Westbury, Salman Khan, Philipp Krähenbühl, Piotr Dollar, Lorenzo Torresani, Kristen Grauman, Christoph Feichtenhofer

April 17, 2025

April 14, 2025

RESEARCH

GRAPHICS

Autoregressive Distillation of Diffusion Transformers

Yeongmin Kim, Sotiris Anagnostidis, Yuming Du, Edgar Schoenfeld, Jonas Kohler, Markos Georgopoulos, Albert Pumarola, Ali Thabet, Artsiom Sanakoyeu

April 14, 2025

March 30, 2025

COMPUTER VISION

Through-The-Mask: Mask-based Motion Trajectories for Image-to-Video Generation

Guy Yariv, Yuval Kirstain, Amit Zohar, Shelly Sheynin, Yaniv Taigman, Yossef (Yossi) Adi, Sagie Benaim, Adam Polyak

March 30, 2025

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.