March 14, 2024
Image codecs are typically optimized to trade-off bitrate vs. distortion metrics. At low bitrates, this leads to compression artefacts which are easily perceptible, even when training with perceptual or adversarial losses. To improve image quality and remove dependency on the bitrate we propose to decode with iterative diffusion models. We condition the decoding process on a vector-quantized image representation, as well as a global image description to provide additional context. We dub our model `PerCo'' for ``perceptual compression'', and compare it to state-of-the-art codecs at rates from 0.1 down to 0.003 bits per pixel. The latter rate is more than an order of magnitude smaller than those considered in most prior work, compressing a 512x768 Kodak image with less than 153 bytes. Despite this ultra-low bitrate, our approach maintains the ability to reconstruct realistic images. We find that our model leads to reconstructions with state-of-the-art visual quality as measured by FID and KID. As predicted by rate-distortion-perception theory, visual quality is less dependent on the bitrate than previous methods.
Written by
Marlene Careil
Matthew Muckley
Jakob Verbeek
Stephane Lathuiliere
Publisher
ICLR
Research Topics
September 05, 2024
Chunting Zhou, Lili Yu, Arun Babu, Kushal Tirumala, Michihiro Yasunaga, Leonid Shamis, Jacob Kahn, Luke Zettlemoyer, Omer Levy, Xuezhe Ma
September 05, 2024
August 20, 2024
Ashish Shenoy, Yichao Lu, Srihari Jayakumar, Debojeet Chatterjee, Mohsen Moslehpour, Pierce Chuang, Abhay Harpale, Vikas Bhardwaj, Di Xu (SWE), Shicong Zhao, Ankit Ramchandani, Luna Dong, Anuj Kumar
August 20, 2024
August 15, 2024
Kamalika Chaudhuri, Chuan Guo, Laurens van der Maaten, Saeed Mahloujifar, Mark Tygert
August 15, 2024
July 29, 2024
Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chay Ryali, Tengyu Ma, Haitham Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Vasudev Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollar, Christoph Feichtenhofer
July 29, 2024
Foundational models
Latest news
Foundational models