April 15, 2018
Spoken language understanding system is traditionally designed as a pipeline of a number of components. First, the audio signal is processed by an automatic speech recognizer for transcription or n-best hypotheses. With the recognition results, a natural language understanding system classifies the text to structured data as domain, intent and slots for down-streaming consumers, such as dialog system, hands-free applications. These components are usually developed and optimized independently. In this paper, we present our study on an end-to-end learning system for spoken language understanding. With this unified approach, we can infer the semantic meaning directly from audio features without the intermediate text representation. This study showed that the trained model can achieve reasonable good result and demonstrated that the model can capture the semantic attention directly from the audio features.
April 25, 2025
Rulin Shao, Qiao Rui, Varsha Kishore, Niklas Muennighoff, Victoria Lin, Daniela Rus, Bryan Kian Hsiang Low, Sewon Min, Scott Yih, Pang Wei Koh, Luke Zettlemoyer
April 25, 2025
April 17, 2025
Ansong Ni, Ruta Desai, Yang Li, Xinjie Lei, Dong Wang, Ramya Raghavendra, Gargi Ghosh, Daniel Li (FAIR), Asli Celikyilmaz
April 17, 2025
March 17, 2025
Zhaofeng Wu, Michihiro Yasunaga, Andrew Cohen, Yoon Kim, Asli Celikyilmaz, Marjan Ghazvininejad
March 17, 2025
February 06, 2025
Jarod Levy, Mingfang (Lucy) Zhang, Svetlana Pinet, Jérémy Rapin, Hubert Jacob Banville, Stéphane d'Ascoli, Jean Remi King
February 06, 2025
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
November 01, 2018
Yedid Hoshen, Lior Wolf
November 01, 2018
December 02, 2018
Sagie Benaim, Lior Wolf
December 02, 2018
June 30, 2019
Geng Ji, Dehua Cheng, Huazhong Ning, Changhe Yuan, Hanning Zhou, Liang Xiong, Erik B. Sudderth
June 30, 2019
Our approach
Latest news
Foundational models