SPEECH & AUDIO

NLP

Toward Joint Language Modeling for Speech Units and Text

August 01, 2024

Abstract

Speech and text are two major forms of human language. The research community has been focusing on mapping speech to text or vice versa for many years. However, in the field of language modeling, very little effort has been made to model them jointly. In light of this, we explore joint language modeling for speech units and text. Specifically, we compare different speech tokenizers to transform continuous speech signals into discrete units and use different methods to construct mixed speech-text data. We introduce automatic metrics to evaluate how well the joint LM mixes speech and text. We also fine-tune the LM on downstream spoken language understanding (SLU) tasks with different modalities (speech or text) and test its performance to assess the model's learning of shared representations. Our results show that by mixing speech units and text with our proposed mixing techniques, the joint LM improves over a speech-only baseline on SLU tasks and shows zero-shot cross-modal transferability.

Download the Paper

AUTHORS

Written by

Ju-Chieh Chou

Wei-Ning Hsu

Karen Livescu

Arun Babu

Alexis Conneau

Alexei Baevski

Michael Auli

Publisher

ARR

Related Publications

October 16, 2024

SPEECH & AUDIO

COMPUTER VISION

Movie Gen: A Cast of Media Foundation Models

Movie Gen Team

October 16, 2024

October 04, 2024

HUMAN & MACHINE INTELLIGENCE

CONVERSATIONAL AI

Beyond Turn-Based Interfaces: Synchronous LLMs as Full-Duplex Dialogue Agents

Bandhav Veluri, Benjamin Peloquin, Bokai Yu, Hongyu Gong, Shyam Gollakota

October 04, 2024

October 03, 2024

NLP

BLASER 2.0: a metric for evaluation and quality estimation of massively multilingual speech and text translation

David Dale, Marta R. Costa-jussa

October 03, 2024

September 26, 2024

SPEECH & AUDIO

NLP

Unveiling the Role of Pretraining in Direct Speech Translation

Belen Alastruey, Gerard I. Gállego, Marta R. Costa-jussa

September 26, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.