RESEARCH

COMPUTER VISION

Time-rEversed diffusioN tEnsor Transformer: A new TENET of Few-Shot Object Detection

October 22, 2022

Abstract

In this paper, we tackle the challenging problem of Few-shot Object Detection. Existing FSOD pipelines (i) use average-pooled representations that result in information loss; and/or (ii) discard position information that can help detect object instances. Consequently, such pipelines are sensitive to large intra-class appearance and geometric variations between support and query images. To address these drawbacks, we propose a Time-rEversed diffusioN tEnsor Transformer (TENET), which i) forms high-order tensor representations that capture multi-way feature occurrences that are highly discriminative, and ii) uses a trans- former that dynamically extracts correlations between the query image and the entire support set, instead of a single average-pooled support em- bedding. We also propose a Transformer Relation Head (TRH), equipped with higher-order representations, which encodes correlations between query regions and the entire support set, while being sensitive to the positional variability of object instances. Our model achieves state-of- the-art results on PASCAL VOC, FSOD, and COCO.

Download the Paper

AUTHORS

Written by

Naila Murray

Lei Wang

Piotr Koniusz

Shan Zhang

Publisher

ECCV

Research Topics

Computer Vision

Related Publications

April 17, 2025

HUMAN & MACHINE INTELLIGENCE

CONVERSATIONAL AI

Collaborative Reasoner: Self-improving Social Agents with Synthetic Conversations

Ansong Ni, Ruta Desai, Yang Li, Xinjie Lei, Dong Wang, Ramya Raghavendra, Gargi Ghosh, Daniel Li (FAIR), Asli Celikyilmaz

April 17, 2025

April 17, 2025

COMPUTER VISION

Perception Encoder: The best visual embeddings are not at the output of the network

Daniel Bolya, Po-Yao Huang, Peize Sun, Jang Hyun Cho, Andrea Madotto, Chen Wei, Tengyu Ma, Jiale Zhi, Jathushan Rajasegaran, Hanoona Rasheed, Junke Wang, Marco Monteiro, Hu Xu, Shiyu Dong, Nikhila Ravi, Daniel Li (FAIR), Piotr Dollar, Christoph Feichtenhofer

April 17, 2025

April 17, 2025

COMPUTER VISION

PerceptionLM: Open-Access Data and Models for Detailed Visual Understanding

Jang Hyun Cho, Andrea Madotto, Effrosyni Mavroudi, Triantafyllos Afouras, Tushar Nagarajan, Muhammad Maaz, Yale Song, Tengyu Ma, Shuming Hu, Hanoona Rasheed, Peize Sun, Po-Yao Huang, Daniel Bolya, Suyog Jain, Miguel Martin, Huiyu Wang, Nikhila Ravi, Shashank Jain, Tammy Stark, Shane Moon, Babak Damavandi, Vivian Lee, Andrew Westbury, Salman Khan, Philipp Krähenbühl, Piotr Dollar, Lorenzo Torresani, Kristen Grauman, Christoph Feichtenhofer

April 17, 2025

April 17, 2025

ROBOTICS

RESEARCH

Locate 3D: Real-World Object Localization via Self-Supervised Learning in 3D

Paul McVay, Sergio Arnaud, Ada Martin, Arjun Majumdar, Krishna Murthy Jatavallabhula, Phillip Thomas, Ruslan Partsey, Daniel Dugas, Abha Gejji, Alexander Sax, Vincent-Pierre Berges, Mikael Henaff, Ayush Jain, Ang Cao, Ishita Prasad, Mrinal Kalakrishnan, Mike Rabbat, Nicolas Ballas, Mido Assran, Oleksandr Maksymets, Aravind Rajeswaran, Franziska Meier

April 17, 2025

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.