June 26, 2023
Self-supervised learning (SSL) has emerged as a powerful framework to learn representations from raw data without supervision. Yet in practice, engineers face issues such as instability in tuning optimizers and collapse of representations during training. Such challenges motivate the need for a theory to shed light on the complex interplay between the choice of data augmentation, network architecture, and training algorithm. We study such an interplay with a precise analysis of generalization performance on both pretraining and downstream tasks in a theory friendly setup, and highlight several insights for SSL practitioners that arise from our theory.
Publisher
ICML
Research Topics
Core Machine Learning
November 20, 2024
Igor Fedorov, Kate Plawiak, Lemeng Wu, Tarek Elgamal, Naveen Suda, Eric Smith, Hongyuan Zhan, Jianfeng Chi, Yuriy Hulovatyy, Kimish Patel, Zechun Liu, Yangyang Shi, Tijmen Blankevoort, Mahesh Pasupuleti, Bilge Soran, Zacharie Delpierre Coudert, Rachad Alao, Raghuraman Krishnamoorthi, Vikas Chandra
November 20, 2024
November 14, 2024
Zhaoyu Li, Jialiang Sun, Logan Murphy, Qidong Su, Zenan Li, Xian Zhang, Kaiyu Yang, Xujie Si
November 14, 2024
November 06, 2024
Aaron Defazio, Alice Yang, Harsh Mehta, Konstantin Mishchenko, Ahmed Khaled, Ashok Cutkosky
November 06, 2024
August 16, 2024
Zhihan Xiong, Maryam Fazel, Lin Xiao
August 16, 2024
Foundational models
Latest news
Foundational models