February 21, 2020
Recent studies have shown that many important aspects of neural network learning take place within the very earliest iterations or epochs of training. For example, sparse, trainable subnetworks emerge (Frankle et al., 2019), gradient descent moves into a small subspace (Gur-Ari et al., 2018), and the network undergoes a critical period (Achille et al., 2019). Here we examine the changes that deep neural networks undergo during this early phase of training. We perform extensive measurements of the network state and its changes during these early iterations of training, and leverage the framework of Frankle et al. (2019) to quantitatively probe the weight distribution and its reliance on various aspects of the dataset. We find that, within this framework, deep networks are not robust to random weights with fixed signs, and that weight distributions are highly non-independent even after only a few hundred iterations. Despite this, pre-training with blurred inputs or an auxiliary self-supervised task can approximate the changes in supervised networks, suggesting that these changes are label-agnostic, though labels significantly accelerate this process. Together, these results help to elucidate the network changes occurring during this pivotal initial period of learning.
Written by
Ari Morcos
David Schwab
Jonathan Frankle
Publisher
ICLR
November 28, 2022
Nicolas Ballas, Bernhard Schölkopf, Chris Pal, Francesco Locatello, Li Erran, Martin Weiss, Nasim Rahaman, Yoshua Bengio
November 28, 2022
November 27, 2022
Andrea Tirinzoni, Aymen Al Marjani, Emilie Kaufmann
November 27, 2022
November 16, 2022
Kushal Tirumala, Aram H. Markosyan, Armen Aghajanyan, Luke Zettlemoyer
November 16, 2022
November 10, 2022
Unnat Jain, Abhinav Gupta, Himangi Mittal, Pedro Morgado
November 10, 2022
Foundational models
Latest news
Foundational models