RESEARCH

The Description Length of Deep Learning Models

December 02, 2018

Abstract

Solomonoff’s general theory of inference (Solomonoff, 1964) and the Minimum Description Length principle (Grünwald, 2007; Rissanen, 2007) formalize Oc- cam’s razor, and hold that a good model of data is a model that is good at losslessly compressing the data, including the cost of describing the model itself. Deep neu- ral networks might seem to go against this principle given the large number of parameters to be encoded. We demonstrate experimentally the ability of deep neural networks to compress the training data even when accounting for parameter encoding. The compression viewpoint originally motivated the use of variational methods in neural networks (Hinton and Van Camp, 1993; Schmidhuber, 1997). Unexpectedly, we found that these variational methods provide surprisingly poor compression bounds, despite being explicitly built to minimize such bounds. This might explain the relatively poor practical performance of variational methods in deep learning. On the other hand, simple incremental encoding methods yield excellent compression values on deep networks, vindicating Solomonoff’s approach.

Download the Paper

AUTHORS

Written by

Yann Ollivier

Léonard Blier

Publisher

NIPS

Related Publications

April 17, 2025

HUMAN & MACHINE INTELLIGENCE

CONVERSATIONAL AI

Collaborative Reasoner: Self-improving Social Agents with Synthetic Conversations

Ansong Ni, Ruta Desai, Yang Li, Xinjie Lei, Dong Wang, Ramya Raghavendra, Gargi Ghosh, Daniel Li (FAIR), Asli Celikyilmaz

April 17, 2025

April 17, 2025

ROBOTICS

RESEARCH

Locate 3D: Real-World Object Localization via Self-Supervised Learning in 3D

Paul McVay, Sergio Arnaud, Ada Martin, Arjun Majumdar, Krishna Murthy Jatavallabhula, Phillip Thomas, Ruslan Partsey, Daniel Dugas, Abha Gejji, Alexander Sax, Vincent-Pierre Berges, Mikael Henaff, Ayush Jain, Ang Cao, Ishita Prasad, Mrinal Kalakrishnan, Mike Rabbat, Nicolas Ballas, Mido Assran, Oleksandr Maksymets, Aravind Rajeswaran, Franziska Meier

April 17, 2025

April 14, 2025

RESEARCH

GRAPHICS

Autoregressive Distillation of Diffusion Transformers

Yeongmin Kim, Sotiris Anagnostidis, Yuming Du, Edgar Schoenfeld, Jonas Kohler, Markos Georgopoulos, Albert Pumarola, Ali Thabet, Artsiom Sanakoyeu

April 14, 2025

March 24, 2025

INTEGRITY

RESEARCH

Data Taggants: Dataset Ownership Verification Via Harmless Targeted Data Poisoning

Wassim (Wes) Bouaziz, Nicolas Usunier, El Mahdi El Mhamdi

March 24, 2025

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.