December 01, 2022
Transformer language models encode the notion of word order using positional information. Most commonly, this positional information is represented by absolute position embeddings (APEs), that are learned from the pretraining data. However, in natural language, it is not absolute position that matters, but relative position, and the extent to which APEs can capture this type of information has not been investigated. In this work, we observe that models trained with APE over-rely on positional in- formation to the point that they break-down when subjected to sentences with shifted posi- tion information. Specifically, when models are subjected to sentences starting from a non-zero position (excluding the effect of priming), they exhibit noticeably degraded performance on zero- to full-shot tasks, across a range of model families and model sizes. Our findings raise questions about the efficacy of APEs to model the relativity of position information, and invite further introspection on the sentence and word order processing strategies employed by these models.
Publisher
EMNLP
May 14, 2025
Brandon M. Wood, Misko Dzamba, Xiang Fu, Meng Gao, Muhammed Shuaibi, Luis Barroso-Luque, Kareem Abdelmaqsoud, Vahe Gharakhanyan, John R. Kitchin, Daniel S. Levine, Kyle Michel, Anuroop Sriram, Taco Cohen, Abhishek Das, Ammar Rizvi, Sushree Jagriti Sahoo, Zachary W. Ulissi, C. Lawrence Zitnick
May 14, 2025
May 14, 2025
Linnea Evanson, Christine Bulteau, Mathilde Chipaux, Georg Dorfmüller, Sarah Ferrand-Sorbets, Emmanuel Raffo, Sarah Rosenberg, Pierre Bourdillon, Jean Remi King
May 14, 2025
April 25, 2025
Rulin Shao, Qiao Rui, Varsha Kishore, Niklas Muennighoff, Victoria Lin, Daniela Rus, Bryan Kian Hsiang Low, Sewon Min, Scott Yih, Pang Wei Koh, Luke Zettlemoyer
April 25, 2025
April 17, 2025
Ansong Ni, Ruta Desai, Yang Li, Xinjie Lei, Dong Wang, Ramya Raghavendra, Gargi Ghosh, Daniel Li (FAIR), Asli Celikyilmaz
April 17, 2025
Our approach
Latest news
Foundational models