COMPUTER VISION

The Casual Conversations v2 Dataset

March 09, 2023

Abstract

This paper introduces a new large consent-driven dataset aimed at assisting in the evaluation of algorithmic bias and robustness of computer vision and audio speech models in regards to 11 attributes that are self-provided or labeled by trained annotators. The dataset includes 26,467 videos of 5,567 unique paid participants, with an average of almost 5 videos per person, recorded in Brazil, India, Indonesia, Mexico, Vietnam, Philippines, and the USA, representing diverse demographic characteristics. The participants agreed for their data to be used in assessing fairness of AI models and provided self-reported age, gender, language/dialect, disability status, physical adornments, physical attributes and geo-location information, while trained annotators labeled apparent skin tone using the Fitzpatrick Skin Type and Monk Skin Tone scales, and voice timbre. Annotators also labeled for different recording setups and per-second activity annotations.

Download the Paper

AUTHORS

Written by

Bilal Porgali

Vítor Albiero

Jordan Ryda

Cristian Canton Ferrer

Caner Hazirbas

Publisher

ArXiv

Research Topics

Computer Vision

Related Publications

November 11, 2024

COMPUTER VISION

HOI-Swap: Swapping Objects in Videos with Hand-Object Interaction Awareness

Sherry Xue, Romy Luo, Changan Chen, Kristen Grauman

November 11, 2024

October 31, 2024

HUMAN & MACHINE INTELLIGENCE

ROBOTICS

Digitizing Touch with an Artificial Multimodal Fingertip

Mike Lambeta, Tingfan Wu, Ali Sengül, Victoria Rose Most, Nolan Black, Kevin Sawyer, Romeo Mercado, Haozhi Qi, Alexander Sohn, Byron Taylor, Norb Tydingco, Gregg Kammerer, Dave Stroud, Jake Khatha, Kurt Jenkins, Kyle Most, Neal Stein, Ricardo Chavira, Thomas Craven-Bartle, Eric Sanchez, Yitian Ding, Jitendra Malik, Roberto Calandra

October 31, 2024

October 16, 2024

SPEECH & AUDIO

COMPUTER VISION

Movie Gen: A Cast of Media Foundation Models

Movie Gen Team

October 16, 2024

September 10, 2024

COMPUTER VISION

Video Editing via Factorized Diffusion Distillation

Uriel Singer, Amit Zohar, Yuval Kirstain, Shelly Sheynin, Adam Polyak, Devi Parikh, Yaniv Taigman

September 10, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.