March 09, 2023
This paper introduces a new large consent-driven dataset aimed at assisting in the evaluation of algorithmic bias and robustness of computer vision and audio speech models in regards to 11 attributes that are self-provided or labeled by trained annotators. The dataset includes 26,467 videos of 5,567 unique paid participants, with an average of almost 5 videos per person, recorded in Brazil, India, Indonesia, Mexico, Vietnam, Philippines, and the USA, representing diverse demographic characteristics. The participants agreed for their data to be used in assessing fairness of AI models and provided self-reported age, gender, language/dialect, disability status, physical adornments, physical attributes and geo-location information, while trained annotators labeled apparent skin tone using the Fitzpatrick Skin Type and Monk Skin Tone scales, and voice timbre. Annotators also labeled for different recording setups and per-second activity annotations.
Publisher
ArXiv
Research Topics
December 12, 2024
Melissa Hall, Oscar Mañas, Reyhane Askari, Mark Ibrahim, Candace Ross, Pietro Astolfi, Tariq Berrada Ifriqi, Marton Havasi, Yohann Benchetrit, Karen Ullrich, Carolina Braga, Abhishek Charnalia, Maeve Ryan, Mike Rabbat, Michal Drozdzal, Jakob Verbeek, Adriana Romero Soriano
December 12, 2024
December 11, 2024
Pierre Fernandez, Hady Elsahar, Zeki Yalniz, Alexandre Mourachko
December 11, 2024
December 11, 2024
Hu Xu, Bernie Huang, Ellen Tan, Ching-Feng Yeh, Jacob Kahn, Christine Jou, Gargi Ghosh, Omer Levy, Luke Zettlemoyer, Scott Yih, Philippe Brunet, Kim Hazelwood, Ramya Raghavendra, Daniel Li (FAIR), Saining Xie, Christoph Feichtenhofer
December 11, 2024
December 11, 2024
Narine Kokhlikyan, Bargav Jayaraman, Florian Bordes, Chuan Guo, Kamalika Chaudhuri
December 11, 2024
Foundational models
Latest news
Foundational models