December 06, 2022
Social media plays an increasing role in our communication with friends and family, and in our consumption of entertainment and information. Hence, to design effective ranking functions for posts on social media, it would be useful to predict the affective responses of a post (e.g., whether it is likely to elicit feelings of entertainment, inspiration, or anger). Similar to work on emotion detection (which focuses on the affect of the publisher of the post), the traditional approach to recognizing affective response would involve an expensive investment in human annotation of training data. We create and publicly release CARE DB, a dataset of 230k social media post annotations according to seven affective responses using the Common Affective Response Expression (CARE) method. The CARE method is a means of leveraging the signal that is present in comments that are posted in response to a post, providing high-precision evidence about the affective response to the post without human annotation. Unlike human annotation, the annotation process we describe here can be iterated upon to expand the coverage of the method, particularly for new affective responses. We present experiments that demonstrate that the CARE annotations compare favorably with crowdsourced annotations. Finally, we use CARE DB to train competitive BERT-based models for predicting affective response as well as emotion detection, demonstrating the utility of the dataset for related tasks.
February 07, 2025
The Omnilingual MT Team, Pierre Andrews, Mikel Artetxe, Mariano Coria Meglioli, Marta R. Costa-jussa, Joe Chuang, David Dale, Cynthia Gao, Jean Maillard, Alexandre Mourachko, Christophe Ropers, Safiyyah Saleem, Eduardo Sánchez, Yiannis Tsiamas, Arina Turkatenko, Albert Ventayol, Shireen Yates
February 07, 2025
February 06, 2025
Jarod Levy, Mingfang (Lucy) Zhang, Svetlana Pinet, Jérémy Rapin, Hubert Jacob Banville, Stéphane d'Ascoli, Jean Remi King
February 06, 2025
February 06, 2025
Mingfang (Lucy) Zhang, Jarod Levy, Stéphane d'Ascoli, Jérémy Rapin, F.-Xavier Alario, Pierre Bourdillon, Svetlana Pinet, Jean Remi King
February 06, 2025
January 04, 2025
January 04, 2025
Foundational models
Our approach
Latest news
Foundational models