NLP

Text Quality-Based Pruning for Efficient Training of Language Models

April 22, 2024

Abstract

In recent times training Language Models (LMs) have relied on computationally heavy training over massive datasets which makes this training process extremely laborious. In this paper we propose a novel method for numerically evaluating text quality in large unlabelled NLP datasets in a model agnostic manner to assign the text instances a "quality score". By proposing the text quality metric, the paper establishes a framework to identify and eliminate low-quality text instances, leading to improved training efficiency for LM models. Experimental results over multiple models and datasets demonstrate the efficacy of this approach, showcasing substantial gains in training effectiveness and highlighting the potential for resource-efficient LM training. For example, we observe an absolute accuracy improvement of 0.9% averaged over 14 downstream evaluation tasks for multiple LM models while using 40% lesser data and training 42% faster when training on the OpenWebText dataset and 0.8% average absolute accuracy improvement while using 20% lesser data and training 21% faster on the Wikipedia dataset.

Download the Paper

AUTHORS

Written by

Vasu Sharma *

Karthik Padthe *

Newsha Ardalani

Kushal Tirumala

Russ Howes

Hu Xu

Bernie Huang

Daniel Li (FAIR)

Armen Aghajanyan

Gargi Ghosh

Luke Zettlemoyer

Publisher

arxiv

Related Publications

March 13, 2025

NLP

COMPUTER VISION

Subobject-level Image Tokenization

Delong Chen, Samuel Cahyawijaya, Jianfeng Liu, Baoyuan Wang, Pascale Fung

March 13, 2025

February 07, 2025

NLP

BOUQuET: dataset, Benchmark and Open initiative for Universal Quality Evaluation in Translation

The Omnilingual MT Team, Pierre Andrews, Mikel Artetxe, Mariano Coria Meglioli, Marta R. Costa-jussa, Joe Chuang, David Dale, Cynthia Gao, Jean Maillard, Alexandre Mourachko, Christophe Ropers, Safiyyah Saleem, Eduardo Sánchez, Yiannis Tsiamas, Arina Turkatenko, Albert Ventayol, Shireen Yates

February 07, 2025

February 06, 2025

RESEARCH

NLP

Brain-to-Text Decoding: A Non-invasive Approach via Typing

Jarod Levy, Mingfang (Lucy) Zhang, Svetlana Pinet, Jérémy Rapin, Hubert Jacob Banville, Stéphane d'Ascoli, Jean Remi King

February 06, 2025

February 06, 2025

RESEARCH

NLP

From Thought to Action: How a Hierarchy of Neural Dynamics Supports Language Production

Mingfang (Lucy) Zhang, Jarod Levy, Stéphane d'Ascoli, Jérémy Rapin, F.-Xavier Alario, Pierre Bourdillon, Svetlana Pinet, Jean Remi King

February 06, 2025

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.