NLP

Text Quality-Based Pruning for Efficient Training of Language Models

April 22, 2024

Abstract

In recent times training Language Models (LMs) have relied on computationally heavy training over massive datasets which makes this training process extremely laborious. In this paper we propose a novel method for numerically evaluating text quality in large unlabelled NLP datasets in a model agnostic manner to assign the text instances a "quality score". By proposing the text quality metric, the paper establishes a framework to identify and eliminate low-quality text instances, leading to improved training efficiency for LM models. Experimental results over multiple models and datasets demonstrate the efficacy of this approach, showcasing substantial gains in training effectiveness and highlighting the potential for resource-efficient LM training. For example, we observe an absolute accuracy improvement of 0.9% averaged over 14 downstream evaluation tasks for multiple LM models while using 40% lesser data and training 42% faster when training on the OpenWebText dataset and 0.8% average absolute accuracy improvement while using 20% lesser data and training 21% faster on the Wikipedia dataset.

Download the Paper

AUTHORS

Written by

Vasu Sharma *

Karthik Padthe *

Newsha Ardalani

Kushal Tirumala

Russ Howes

Hu Xu

Bernie Huang

Daniel Li (FAIR)

Armen Aghajanyan

Gargi Ghosh

Luke Zettlemoyer

Publisher

arxiv

Related Publications

September 05, 2024

CONVERSATIONAL AI

NLP

Transfusion: Predict the Next Token and Diffuse Images with One Multi-Modal Model

Chunting Zhou, Lili Yu, Arun Babu, Kushal Tirumala, Michihiro Yasunaga, Leonid Shamis, Jacob Kahn, Luke Zettlemoyer, Omer Levy, Xuezhe Ma

September 05, 2024

August 20, 2024

CONVERSATIONAL AI

NLP

Lumos : Empowering Multimodal LLMs with Scene Text Recognition

Ashish Shenoy, Yichao Lu, Srihari Jayakumar, Debojeet Chatterjee, Mohsen Moslehpour, Pierce Chuang, Abhay Harpale, Vikas Bhardwaj, Di Xu (SWE), Shicong Zhao, Ankit Ramchandani, Luna Dong, Anuj Kumar

August 20, 2024

August 11, 2024

NLP

LM Transparency Tool: Interactive Tool for Analyzing Transformer Language Models

Igor Tufanov, Karen Hambardzumyan, Javier Ferrando, Lena Voita

August 11, 2024

August 11, 2024

NLP

MuTox: Universal MUltilingual Audio-based TOXicity Dataset and Zero-shot Detector

Marta R. Costa-jussa, Mariano Coria Meglioli, Pierre Andrews, David Dale, Kae Hansanti, Elahe Kalbassi, Christophe Ropers, Carleigh Wood

August 11, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.