April 22, 2024
In recent times training Language Models (LMs) have relied on computationally heavy training over massive datasets which makes this training process extremely laborious. In this paper we propose a novel method for numerically evaluating text quality in large unlabelled NLP datasets in a model agnostic manner to assign the text instances a "quality score". By proposing the text quality metric, the paper establishes a framework to identify and eliminate low-quality text instances, leading to improved training efficiency for LM models. Experimental results over multiple models and datasets demonstrate the efficacy of this approach, showcasing substantial gains in training effectiveness and highlighting the potential for resource-efficient LM training. For example, we observe an absolute accuracy improvement of 0.9% averaged over 14 downstream evaluation tasks for multiple LM models while using 40% lesser data and training 42% faster when training on the OpenWebText dataset and 0.8% average absolute accuracy improvement while using 20% lesser data and training 21% faster on the Wikipedia dataset.
Written by
Vasu Sharma *
Karthik Padthe *
Newsha Ardalani
Kushal Tirumala
Russ Howes
Hu Xu
Bernie Huang
Daniel Li (FAIR)
Armen Aghajanyan
Gargi Ghosh
Publisher
arxiv
Research Topics
September 05, 2024
Chunting Zhou, Lili Yu, Arun Babu, Kushal Tirumala, Michihiro Yasunaga, Leonid Shamis, Jacob Kahn, Luke Zettlemoyer, Omer Levy, Xuezhe Ma
September 05, 2024
August 20, 2024
Ashish Shenoy, Yichao Lu, Srihari Jayakumar, Debojeet Chatterjee, Mohsen Moslehpour, Pierce Chuang, Abhay Harpale, Vikas Bhardwaj, Di Xu (SWE), Shicong Zhao, Ankit Ramchandani, Luna Dong, Anuj Kumar
August 20, 2024
August 11, 2024
Igor Tufanov, Karen Hambardzumyan, Javier Ferrando, Lena Voita
August 11, 2024
August 11, 2024
Marta R. Costa-jussa, Mariano Coria Meglioli, Pierre Andrews, David Dale, Kae Hansanti, Elahe Kalbassi, Christophe Ropers, Carleigh Wood
August 11, 2024
Foundational models
Latest news
Foundational models