Research

NLP

TaxoGen: Unsupervised Topic Taxonomy Construction by Adaptive Term Embedding and Clustering

August 20, 2018

Abstract

Taxonomy construction is not only a fundamental task for semantic analysis of text corpora, but also an important step for applications such as information filtering, recommendation, and Web search. Existing pattern-based methods extract hypernym-hyponym term pairs and then organize these pairs into a taxonomy. However, by considering each term as an independent concept node, they over-look the topical proximity and the semantic correlations among terms. In this paper, we propose a method for constructing topic taxonomies, wherein every node represents a conceptual topic and is defined as a cluster of semantically coherent concept terms. Our method, TaxoGen, uses term embeddings and hierarchical cluster-ing to construct a topic taxonomy in a recursive fashion. To ensure the quality of the recursive process, it consists of: (1) an adaptive spherical clustering module for allocating terms to proper levels when splitting a coarse topic into fine-grained ones; (2) a local embedding module for learning term embeddings that maintain strong discriminative power at different levels of the taxonomy. Our experiments on two real datasets demonstrate the effectiveness of TaxoGen compared with baseline methods.

Download the Paper

Related Publications

November 16, 2022

NLP

Memorization Without Overfitting: Analyzing the Training Dynamics of Large Language Models

Kushal Tirumala, Aram H. Markosyan, Armen Aghajanyan, Luke Zettlemoyer

November 16, 2022

October 31, 2022

NLP

Autoregressive Search Engines: Generating Substrings as Document Identifiers

Fabio Petroni, Giuseppe Ottaviano, Michele Bevilacqua, Patrick Lewis, Scott Yih, Sebastian Riedel

October 31, 2022

December 06, 2020

NLP

Pre-training via Paraphrasing

Michael Lewis, Armen Aghajanyan, Gargi Ghosh, Luke Zettlemoyer, Marjan Ghazvininejad, Sida Wang

December 06, 2020

November 30, 2020

NLP

Where Are You? Localization from Embodied Dialog

Dhruv Batra, Devi Parikh, Meera Hahn, Jacob Krantz, James Rehg, Peter Anderson, Stefan Lee

November 30, 2020

April 30, 2018

NLP

Speech & Audio

Identifying Analogies Across Domains | Facebook AI Research

Yedid Hoshen, Lior Wolf

April 30, 2018

November 01, 2018

NLP

Computer Vision

Non-Adversarial Unsupervised Word Translation | Facebook AI Research

Yedid Hoshen, Lior Wolf

November 01, 2018

December 02, 2018

NLP

Computer Vision

One-Shot Unsupervised Cross Domain Translation | Facebook AI Research

Sagie Benaim, Lior Wolf

December 02, 2018

June 30, 2019

NLP

Variational Training for Large-Scale Noisy-OR Bayesian Networks | Facebook AI Research

Geng Ji, Dehua Cheng, Huazhong Ning, Changhe Yuan, Hanning Zhou, Liang Xiong, Erik B. Sudderth

June 30, 2019

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.