July 14, 2020
We consider a deep ReLU / Leaky ReLU student network trained from the output of a fixed teacher network of the same depth, with Stochastic Gradient Descent (SGD). The student network is over-realized: at each layer l, the number nl of student nodes is more than that (ml) of teacher. Under mild conditions on dataset and teacher network, we prove that when the gradient is small at every data sample, each teacher node is specialized by at least one student node at the lowest layer. For two-layer network, such specialization can be achieved by training on any dataset of polynomial size O(K^{5/2}d^3ϵ^{−1}). until the gradient magnitude drops to O(ϵ/K^{3/2}d^{1/2}). Here d is the input dimension, K=m_1+n_1 is the total number of neurons in the lowest layer of teacher and student. Note that we require a specific form of data augmentation and the sample complexity includes the additional data generated from augmentation. To our best knowledge, we are the first to give polynomial sample complexity for student specialization of training two-layer (Leaky) ReLU networks with finite depth and width in teacher-student setting, and finite complexity for the lowest layer specialization in multi-layer case, without parametric assumption of the input (like Gaussian). Our theory suggests that teacher nodes with large fan-out weights get specialized first when the gradient is still large, while others are specialized with small gradient, which suggests inductive bias in training. This shapes the stage of training as empirically observed in multiple previous works. Experiments on synthetic and CIFAR10 verify our findings. The code is released in https://github.com/facebookresearch/luckmatters/
Written by
Yuandong Tian
Research Topics
Artificial Intelligence
November 27, 2022
Nicolas Ballas, Bernhard Schölkopf, Chris Pal, Francesco Locatello, Li Erran, Martin Weiss, Nasim Rahaman, Yoshua Bengio
November 27, 2022
November 27, 2022
Andrea Tirinzoni, Aymen Al Marjani, Emilie Kaufmann
November 27, 2022
November 16, 2022
Kushal Tirumala, Aram H. Markosyan, Armen Aghajanyan, Luke Zettlemoyer
November 16, 2022
November 10, 2022
Unnat Jain, Abhinav Gupta, Himangi Mittal, Pedro Morgado
November 10, 2022
April 08, 2021
Caner Hazirbas, Joanna Bitton, Brian Dolhansky, Jacqueline Pan, Albert Gordo, Cristian Canton Ferrer
April 08, 2021
April 30, 2018
Tomer Galanti, Lior Wolf, Sagie Benaim
April 30, 2018
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
December 11, 2019
Eliya Nachmani, Lior Wolf
December 11, 2019
Foundational models
Latest news
Foundational models