April 26, 2020
In order to contrast the explosion in size of state-of-the-art machine learning models that can be attributed to the empirical advantages of over-parametrization, and due to the necessity of deploying fast, sustainable, and private on-device models on resource-constrained devices, the community has focused on techniques such as pruning, quantization, and distillation as central strategies for model compression. Towards the goal of facilitating the adoption of a common interface for neural network pruning in PyTorch, this contribution describes the recent addition of the PyTorch torch.nn.utils.prune module, which provides shared, open-source pruning functionalities to lower the technical implementation barrier to reducing model size and capacity before, during, and/or after training. We present the module’s user interface, elucidate implementation details, illustrate example usage, and suggest ways to extend the contributed functionalities to new pruning methods.
Publisher
ICLR workshop on Practical ML for Developing Countries
February 27, 2025
Pascal Kesseli, Peter O'Hearn, Ricardo Silveira Cabral
February 27, 2025
February 06, 2025
Andros Tjandra, Yi-Chiao Wu, Baishan Guo, John Hoffman, Brian Ellis, Apoorv Vyas, Bowen Shi, Sanyuan Chen, Matt Le, Nick Zacharov, Carleigh Wood, Ann Lee, Wei-Ning Hsu
February 06, 2025
February 06, 2025
Jarod Levy, Mingfang (Lucy) Zhang, Svetlana Pinet, Jérémy Rapin, Hubert Jacob Banville, Stéphane d'Ascoli, Jean Remi King
February 06, 2025
February 06, 2025
Mingfang (Lucy) Zhang, Jarod Levy, Stéphane d'Ascoli, Jérémy Rapin, F.-Xavier Alario, Pierre Bourdillon, Svetlana Pinet, Jean Remi King
February 06, 2025
April 08, 2021
Caner Hazirbas, Joanna Bitton, Brian Dolhansky, Jacqueline Pan, Albert Gordo, Cristian Canton Ferrer
April 08, 2021
April 30, 2018
Tomer Galanti, Lior Wolf, Sagie Benaim
April 30, 2018
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
December 11, 2019
Eliya Nachmani, Lior Wolf
December 11, 2019
Foundational models
Our approach
Latest news
Foundational models