Research

Streamed Approximate Counting of Distinct Elements

August 24, 2014

Abstract

Counting the number of distinct elements in a large dataset is a common task in web applications and databases. This problem is difficult in limited memory settings where storing a large hash table table is intractable. This paper advances the state of the art in probabilistic methods for estimating the number of distinct elements in a streaming setting. New streaming algorithms are given that provably beat the “optimal” errors for Min-count and HyperLogLog while using the same sketch.

This paper also contributes to the understanding and theory of probabilistic cardinality estimation introducing the concept of an area cutting process and the martingale estimator. These ideas lead to theoretical analyses of both old and new sketches and estimators and show the new estimators are optimal for several streaming settings while also providing accurate error bounds that match those obtained via simulation.

Furthermore, the area cutting process provides a geometric intuition behind all methods for counting distinct elements which are not affected by duplicates. This intuition leads to a new sketch, Discrete Max-count, and the analysis of a class of sketches, self-similar area cutting decompositions that have attractive properties and unbiased estimators for both streaming and non-streaming settings.

Together, these contributions lead to multi faceted advances in sketch construction, cardinality and error estimation, the theory, and intuition for the problem of approximate counting of distinct elements for both the streaming and non-streaming cases.

Download the Paper

Related Publications

November 10, 2025

Speech & Audio

Omnilingual ASR: Open-Source Multilingual Speech Recognition for 1600+ Languages

Omnilingual ASR team, Gil Keren, Artyom Kozhevnikov, Yen Meng, Christophe Ropers, Matthew Setzler, Skyler Wang, Ife Adebara, Michael Auli, Can Balioglu, Kevin Chan, Chierh Cheng, Joe Chuang, Caley Drooff, Mark Duppenthaler, Paul-Ambroise Duquenne, Alexander Erben, Cynthia Gao, Gabriel Mejia Gonzalez, Kehan Lyu, Sagar Miglani, Vineel Pratap, Kaushik Ram Sadagopan, Safiyyah Saleem, Arina Turkatenko, Albert Ventayol-Boada, Zheng-Xin Yong, Yu-An Chung, Jean Maillard, Rashel Moritz, Alexandre Mourachko, Mary Williamson, Shireen Yates

November 10, 2025

October 18, 2025

NLP

Controlling Multimodal LLMs via Reward-guided Decoding

Oscar Mañas, Pierluca D'Oro, Koustuv Sinha, Adriana Romero Soriano, Michal Drozdzal, Aishwarya Agrawal

October 18, 2025

October 13, 2025

Reinforcement Learni9ng

SPG: Sandwiched Policy Gradient for Masked Diffusion Language Models

Chenyu Wang, Paria Rashidinejad, DiJia Su, Song Jiang, Sid Wang, Siyan Zhao, Cai Zhou, Shannon Zejiang Shen, Feiyu Chen, Tommi Jaakkola, Yuandong Tian, Bo Liu

October 13, 2025

September 24, 2025

NLP

CWM: An Open-Weights LLM for Research on Code Generation with World Models

Jade Copet, Quentin Carbonneaux, Gal Cohen, Jonas Gehring, Jacob Kahn, Jannik Kossen, Felix Kreuk, Emily McMilin, Michel Meyer, Yuxiang Wei, David Zhang, Kunhao Zheng, Jordi Armengol Estape, Pedram Bashiri, Maximilian Beck, Pierre Chambon, Abhishek Charnalia, Chris Cummins, Juliette Decugis, Zacharias Fisches, François Fleuret, Fabian Gloeckle, Alex Gu, Michael Hassid, Daniel Haziza, Badr Youbi Idrissi, Christian Keller, Rahul Kindi, Hugh Leather, Gallil Maimon, Aram Markosyan, Francisco Massa, Pierre-Emmanuel Mazaré, Vegard Mella, Naila Murray, Keyur Muzumdar, Peter O'Hearn, Matteo Pagliardini, Dmitrii Pedchenko, Tal Remez, Volker Seeker, Marco Selvi, Oren Sultan, Sida Wang, Luca Wehrstedt, Ori Yoran, Lingming Zhang, Taco Cohen, Yossi Adi, Gabriel Synnaeve

September 24, 2025

October 31, 2019

NLP

Facebook AI's WAT19 Myanmar-English Translation Task Submission

Peng-Jen Chen, Jiajun Shen, Matt Le, Vishrav Chaudhary, Ahmed El-Kishky, Guillaume Wenzek, Myle Ott, Marc’Aurelio Ranzato

October 31, 2019

October 27, 2019

Order-Aware Generative Modeling Using the 3D-Craft Dataset | Facebook AI Research

Zhuoyuan Chen, Demi Guo, Tong Xiao, Saining Xie, Xinlei Chen, Haonan Yu, Jonathan Gray, Kavya Srinet, Haoqi Fan, Jerry Ma, Charles R. Qi, Shubham Tulsiani, Arthur Szlam, Larry Zitnick

October 27, 2019

April 25, 2020

Energy-Based Models for Atomic-Resolution Protein Conformations | Facebook AI Research

Yilun Du, Joshua Meier, Jerry Ma, Rob Fergus, Alexander Rives

April 25, 2020

June 11, 2019

Computer Vision

ELF OpenGo: An Analysis and Open Reimplementation of AlphaZero | Facebook AI Research

Yuandong Tian, Jerry Ma, Qucheng Gong, Shubho Sengupta, Zhuoyuan Chen, James Pinkerton, Larry Zitnick

June 11, 2019

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.