July 11, 2019
Writers generally rely on plans or sketches to write long stories, but most current language models generate word by word from left to right. We explore coarse-to-fine models for creating narrative texts of several hundred words, and introduce new models which decompose stories by abstracting over actions and entities. The model first generates the predicate-argument structure of the text, where different mentions of the same entity are marked with placeholder tokens. It then generates a surface realization of the predicate-argument structure, and finally replaces the entity placeholders with context-sensitive names and references. Human judges prefer the stories from our models to a wide range of previous approaches to hierarchical text generation. Extensive analysis shows that our methods can help improve the diversity and coherence of events and entities in generated stories.
Publisher
ACL
August 01, 2024
Ju-Chieh Chou, Wei-Ning Hsu, Karen Livescu, Arun Babu, Alexis Conneau, Alexei Baevski, Michael Auli
August 01, 2024
July 23, 2024
Llama team
July 23, 2024
June 25, 2024
Min-Jae Hwang, Ilia Kulikov, Benjamin Peloquin, Hongyu Gong, Peng-Jen Chen, Ann Lee
June 25, 2024
June 05, 2024
Robin San Romin, Pierre Fernandez, Hady Elsahar, Alexandre Deffosez, Teddy Furon, Tuan Tran
June 05, 2024
Foundational models
Latest news
Foundational models