Research

Computer Vision

Spatially Invariant Unsupervised Object Detection with Convolutional Neural Networks

January 18, 2019

Abstract

There are many reasons to expect an ability to reason in terms of objects to be a crucial skill for any generally intelligent agent. Indeed, recent machine learning literature is replete with examples of the benefits of object-like representations: generalization, transfer to new tasks, and interpretability, among others. However, in order to reason in terms of objects, agents need a way of discovering and detecting objects in the visual world – a task which we call unsupervised object detection. This task has received significantly less attention in the literature than its supervised counterpart, especially in the case of large images containing many objects. In the current work, we develop a neural network architecture that effectively addresses this large-image, many-object setting. In particular, we combine ideas from Attend, Infer, Repeat (AIR), which performs unsupervised object detection but does not scale well, with recent developments in supervised object detection. We replace AIR’s core recurrent network with a convolutional (and thus spatially invariant) network, and make use of an object-specification scheme that describes the location of objects with respect to local grid cells rather than the image as a whole. Through a series of experiments, we demonstrate a number of features of our architecture: that, unlike AIR, it is able to discover and detect objects in large, many-object scenes; that it has a significant ability to generalize to images that are larger and contain more objects than images encountered during training; and that it is able to discover and detect objects with enough accuracy to facilitate non-trivial downstream processing.

Download the Paper

Related Publications

October 18, 2025

NLP

Controlling Multimodal LLMs via Reward-guided Decoding

Oscar Mañas, Pierluca D'Oro, Koustuv Sinha, Adriana Romero Soriano, Michal Drozdzal, Aishwarya Agrawal

October 18, 2025

September 23, 2025

NLP

MetaEmbed: Scaling Multimodal Retrieval at Test-Time with Flexible Late Interactions

Zilin Xiao, Qi Ma, Mengting Gu, Jason Chen, Xintao Chen, Vicente Ordonez, Vijai Mohan

September 23, 2025

August 14, 2025

Computer Vision

DINOv3

Oriane Siméoni, Huy V. Vo, Maximilian Seitzer, Federico Baldassarre, Maxime Oquab, Cijo Jose, Vasil Khalidov, Marc Szafraniec, Seungeun Yi, Michaël Ramamonjisoa, Francisco Massa, Daniel Haziza, Luca Wehrstedt, Jianyuan Wang, Timothée Darcet, Theo Moutakanni, Leonel Sentana, Claire Roberts, Andrea Vedaldi, Jamie Tolan, John Brandt, Camille Couprie, Julien Mairal, Herve Jegou, Patrick Labatut, Piotr Bojanowski

August 14, 2025

August 13, 2025

Human & Machine Intelligence

Disentangling the Factors of Convergence between Brains and Computer Vision Models

Josephine Raugel, Marc Szafraniec, Huy V. Vo, Camille Couprie, Patrick Labatut, Piotr Bojanowski, Valentin Wyart, Jean Remi King

August 13, 2025

June 11, 2019

Computer Vision

ELF OpenGo: An Analysis and Open Reimplementation of AlphaZero | Facebook AI Research

Yuandong Tian, Jerry Ma, Qucheng Gong, Shubho Sengupta, Zhuoyuan Chen, James Pinkerton, Larry Zitnick

June 11, 2019

April 30, 2018

NLP

Computer Vision

Mastering the Dungeon: Grounded Language Learning by Mechanical Turker Descent | Facebook AI Research

Zhilin Yang, Saizheng Zhang, Jack Urbanek, Will Feng, Alexander H. Miller, Arthur Szlam, Douwe Kiela, Jason Weston

April 30, 2018

October 10, 2016

Speech & Audio

Computer Vision

Polysemous Codes | Facebook AI Research

Matthijs Douze, Hervé Jégou, Florent Perronnin

October 10, 2016

June 18, 2018

Speech & Audio

Computer Vision

Low-shot learning with large-scale diffusion | Facebook AI Research

Matthijs Douze, Arthur Szlam, Bharath Hariharan, Hervé Jégou

June 18, 2018

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.