COMPUTER VISION

SoundSpaces: Audio-Visual Navigation in 3D Environments

August 21, 2020

Abstract

Moving around in the world is naturally a multisensory experience, but today's embodied agents are deaf---restricted to solely their visual perception of the environment. We introduce audio-visual navigation for complex, acoustically and visually realistic 3D environments. By both seeing and hearing, the agent must learn to navigate to a sounding object. We propose a multi-modal deep reinforcement learning approach to train navigation policies end-to-end from a stream of egocentric audio-visual observations, allowing the agent to (1) discover elements of the geometry of the physical space indicated by the reverberating audio and (2) detect and follow sound-emitting targets. We further introduce SoundSpaces: a first-of-its-kind dataset of audio renderings based on geometrical acoustic simulations for two sets of publicly available 3D environments (Matterport3D and Replica), and we instrument Habitat to support the new sensor, making it possible to insert arbitrary sound sources in an array of real-world scanned environments. Our results show that audio greatly benefits embodied visual navigation in 3D spaces, and our work lays groundwork for new research in embodied AI with audio-visual perception. Project: http://vision.cs.utexas.edu/projects/audio_visual_navigation.

Download the Paper

AUTHORS

Written by

Kristen Grauman

Carl Schissler

Philip Robinson

Sebastià V. Amengual Garí

Unnat Jain

Vamsi Krishna Ithapu

Changan Chen

Ziad Al-Halah

Publisher

ECCV

Research Topics

Computer Vision

Related Publications

April 17, 2025

COMPUTER VISION

Perception Encoder: The best visual embeddings are not at the output of the network

Daniel Bolya, Po-Yao Huang, Peize Sun, Jang Hyun Cho, Andrea Madotto, Chen Wei, Tengyu Ma, Jiale Zhi, Jathushan Rajasegaran, Hanoona Rasheed, Junke Wang, Marco Monteiro, Hu Xu, Shiyu Dong, Nikhila Ravi, Daniel Li (FAIR), Piotr Dollar, Christoph Feichtenhofer

April 17, 2025

April 17, 2025

COMPUTER VISION

PerceptionLM: Open-Access Data and Models for Detailed Visual Understanding

Jang Hyun Cho, Andrea Madotto, Effrosyni Mavroudi, Triantafyllos Afouras, Tushar Nagarajan, Muhammad Maaz, Yale Song, Tengyu Ma, Shuming Hu, Hanoona Rasheed, Peize Sun, Po-Yao Huang, Daniel Bolya, Suyog Jain, Miguel Martin, Huiyu Wang, Nikhila Ravi, Shashank Jain, Tammy Stark, Shane Moon, Babak Damavandi, Vivian Lee, Andrew Westbury, Salman Khan, Philipp Krähenbühl, Piotr Dollar, Lorenzo Torresani, Kristen Grauman, Christoph Feichtenhofer

April 17, 2025

April 14, 2025

RESEARCH

GRAPHICS

Autoregressive Distillation of Diffusion Transformers

Yeongmin Kim, Sotiris Anagnostidis, Yuming Du, Edgar Schoenfeld, Jonas Kohler, Markos Georgopoulos, Albert Pumarola, Ali Thabet, Artsiom Sanakoyeu

April 14, 2025

March 30, 2025

COMPUTER VISION

Through-The-Mask: Mask-based Motion Trajectories for Image-to-Video Generation

Guy Yariv, Yuval Kirstain, Amit Zohar, Shelly Sheynin, Yaniv Taigman, Yossef (Yossi) Adi, Sagie Benaim, Adam Polyak

March 30, 2025

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.