November 29, 2023
Massively multilingual and multimodal sentence representations like SONAR are usually trained to capture only the meaning of the encoded text or speech. We complement this semantic embedding by a generic speech characteristic embedding which captures the expressive properties of a speech signal. We describe an iterative training procedure which aims to disentangle the semantics and expressive speech properties, and which does not need labeled data. We show the effectiveness of our method on the FLEURS and mExpresso benchmark test sets using multiple metrics which aim to measure the preservation of the meaning and prosody for zero-shot speech-to-speech translation from five languages into English.
Written by
Paul-Ambroise Duquenne
Kevin Heffernan
Alexandre Mourachko
Benoit Sagot (INRIA)
Publisher
arXiv
Research Topics
November 20, 2024
Igor Fedorov, Kate Plawiak, Lemeng Wu, Tarek Elgamal, Naveen Suda, Eric Smith, Hongyuan Zhan, Jianfeng Chi, Yuriy Hulovatyy, Kimish Patel, Zechun Liu, Yangyang Shi, Tijmen Blankevoort, Mahesh Pasupuleti, Bilge Soran, Zacharie Delpierre Coudert, Rachad Alao, Raghuraman Krishnamoorthi, Vikas Chandra
November 20, 2024
November 19, 2024
Shehzaad Dhuliawala, Ilia Kulikov, Ping Yu, Asli Celikyilmaz, Jason Weston, Sainbayar Sukhbaatar, Jack Lanchantin
November 19, 2024
November 14, 2024
Zhaoyu Li, Jialiang Sun, Logan Murphy, Qidong Su, Zenan Li, Xian Zhang, Kaiyu Yang, Xujie Si
November 14, 2024
October 04, 2024
Bandhav Veluri, Benjamin Peloquin, Bokai Yu, Hongyu Gong, Shyam Gollakota
October 04, 2024
Foundational models
Latest news
Foundational models