RESEARCH

COMPUTER VISION

Slim DensePose: Thrifty Learning from Sparse Annotations and Motion Cues

June 12, 2019

Abstract

DensePose supersedes traditional landmark detectors by densely mapping image pixels to body surface coordinates. This power, however, comes at a greatly increased annotation time, as supervising the model requires to manually label hundreds of points per pose instance. In this work, we thus seek methods to significantly slim down the DensePose annotations, proposing more efficient data collection strategies. In particular, we demonstrate that if annotations are collected in video frames, their efficacy can be multiplied for free by using motion cues. To explore this idea, we introduce DensePose-Track, a dataset of videos where selected frames are annotated in the traditional DensePose manner. Then, building on geometric properties of the DensePose mapping, we use the video dynamic to propagate ground-truth annotations in time as well as to learn from Siamese equivariance constraints. Having performed exhaustive empirical evaluation of various data annotation and learning strategies, we demonstrate that doing so can deliver significantly improved pose estimation results over strong baselines. However, despite what is suggested by some recent works, we show that merely synthesizing motion patterns by applying geometric transformations to isolated frames is significantly less effective, and that motion cues help much more when they are extracted from videos.

Download the Paper

AUTHORS

Written by

Natalia Neverova

Andrea Vedaldi

James Thewlis

Iasonas Kokkinos

Riza Alp Guler

Publisher

CVPR

Research Topics

Computer Vision

Related Publications

May 14, 2025

RESEARCH

CORE MACHINE LEARNING

UMA: A Family of Universal Models for Atoms

Brandon M. Wood, Misko Dzamba, Xiang Fu, Meng Gao, Muhammed Shuaibi, Luis Barroso-Luque, Kareem Abdelmaqsoud, Vahe Gharakhanyan, John R. Kitchin, Daniel S. Levine, Kyle Michel, Anuroop Sriram, Taco Cohen, Abhishek Das, Ammar Rizvi, Sushree Jagriti Sahoo, Zachary W. Ulissi, C. Lawrence Zitnick

May 14, 2025

May 13, 2025

HUMAN & MACHINE INTELLIGENCE

RESEARCH

Dynadiff: Single-stage Decoding of Images from Continuously Evolving fMRI

Marlène Careil, Yohann Benchetrit, Jean-Rémi King

May 13, 2025

April 25, 2025

RESEARCH

NLP

ReasonIR: Training Retrievers for Reasoning Tasks

Rulin Shao, Qiao Rui, Varsha Kishore, Niklas Muennighoff, Victoria Lin, Daniela Rus, Bryan Kian Hsiang Low, Sewon Min, Scott Yih, Pang Wei Koh, Luke Zettlemoyer

April 25, 2025

April 17, 2025

HUMAN & MACHINE INTELLIGENCE

CONVERSATIONAL AI

Collaborative Reasoner: Self-improving Social Agents with Synthetic Conversations

Ansong Ni, Ruta Desai, Yang Li, Xinjie Lei, Dong Wang, Ramya Raghavendra, Gargi Ghosh, Daniel Li (FAIR), Asli Celikyilmaz

April 17, 2025

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.