July 10, 2020
We propose a new globally convergent stochastic second order method. Our starting point is the development of a new Sketched Newton-Raphson (SNR) method for solving large scale nonlinear equations of the form F(x)=0 with F: R^d -> R^d. We then show how to design several stochastic second order optimization methods by re-writing the optimization problem of interest as a system of nonlinear equations and applying SNR. For instance, by applying SNR to find a stationary point of a generalized linear model (GLM), we derive completely new and scalable stochastic second order methods. We show that the resulting method is very competitive as compared to state-of-the-art variance reduced methods. Using a variable splitting trick, we also show that the Stochastic Newton method (SNM) is a special case of SNR, and use this connection to establish the first global convergence theory of SNM. Indeed, by showing that SNR can be interpreted as a variant of the stochastic gradient descent (SGD) method we are able to leverage proof techniques of SGD and establish a global convergence theory and rates of convergence for SNR. As a special case, our theory also provides a new global convergence theory for the original Newton-Raphson method under strictly weaker assumptions as compared to what is commonly used for global convergence. There are many ways to re-write an optimization problem as nonlinear equations. Each re-write would lead to a distinct method when using SNR. As such, we believe that SNR and its global convergence theory will open the way to designing and analysing a host of new stochastic second order methods.
Written by
Rui Yuan
Alessandro Lazaric
Robert Gower
Publisher
ICML Workshop
November 28, 2022
Nicolas Ballas, Bernhard Schölkopf, Chris Pal, Francesco Locatello, Li Erran, Martin Weiss, Nasim Rahaman, Yoshua Bengio
November 28, 2022
November 23, 2022
Tal Hassner, Cuong N. Nguyen, Cuong V. Nguyen, Lam Si Tung Ho, Vu Dinh
November 23, 2022
November 16, 2022
Kushal Tirumala, Aram H. Markosyan, Armen Aghajanyan, Luke Zettlemoyer
November 16, 2022
November 10, 2022
Unnat Jain, Abhinav Gupta, Himangi Mittal, Pedro Morgado
November 10, 2022
Foundational models
Latest news
Foundational models