June 27, 2019
We predict that applications in AR/VR devices [1] and intelligence devices will lead to the emergence of a new class of image sensors — machine perception CIS (MPCIS). This new class of sensors will produce images and videos optimized primarily for machine vision applications, not human consumption. Unlike human perception CIS, where the ultimate criterion is visual image quality [2], there is no existing criterion to judge MPCIS sensor performance. In this paper, we present a full stack sensor modeling and benchmarking pipeline (from sensors to algorithms) that could serve as the platform for performance evaluation. We illustrate how sensor modeling and benchmarking help us understand complex system trade-offs and dependencies between sensor and algorithm performance, specifically for simultaneous localization and mapping (SLAM).
Publisher
Research Topics
November 10, 2022
Unnat Jain, Abhinav Gupta, Himangi Mittal, Pedro Morgado
November 10, 2022
November 06, 2022
Filip Radenovic, Abhimanyu Dubey, Dhruv Mahajan
November 06, 2022
October 25, 2022
Mustafa Mukadam, Austin Wang, Brandon Amos, Daniel DeTone, Jing Dong, Joe Ortiz, Luis Pineda, Maurizio Monge, Ricky Chen, Shobha Venkataraman, Stuart Anderson, Taosha Fan, Paloma Sodhi
October 25, 2022
October 22, 2022
Naila Murray, Lei Wang, Piotr Koniusz, Shan Zhang
October 22, 2022
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
December 11, 2019
Eliya Nachmani, Lior Wolf
December 11, 2019
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
November 01, 2018
Yedid Hoshen, Lior Wolf
November 01, 2018
Foundational models
Latest news
Foundational models